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Abstract

When artists portray human faces, they
generally endow their portraits with
properties that render the faces esthetically
more pleasing. To obtain insight into the
changes introduced by artists, we
compared Fourier power spectra in
photographs of faces and in portraits by
artists. Our analysis was restricted to a
large set of monochrome or lightly colored
portraits from various Western cultures and
revealed a paradoxical result. Although
face photographs are not scale-invariant,
artists draw human faces with statistical
properties that deviate from the face
photographs and approximate the scale-
invariant, fractal-like properties of

complex natural scenes. This result cannot
be explained by systematic differences in
the complexity of patterns surrounding the
faces or by reproduction artefacts. In
particular, a moderate change in gamma
gradation has little influence on the results.
Moreover, the scale-invariant rendering of
faces in artists' portraits was found to be
independent of cultural variables, such as
century of origin or artistic techniques. We
suggest that artists have implicit
knowledge of image statistics and prefer
natural scene statistics (or some other rules
associated with them) in their creations.
Fractal-like statistics have been
demonstrated previously in other forms of
visual art and may be a general attribute of
esthetic visual stimuli.
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Introduction

The fundamental nature of esthetic
judgement remains unkown, despite
attempts by artists, philosophers and
psychologists to define universal principles
that characterize what makes art
esthetically pleasing to human observers.
Several scholars in the field have argued
that all humans share the same concept of
beauty (Adorno 1970; Burke 1757; Hume
1757; Kandinsky 1912; Kant 1790; Paul
1988; Schelling 1907) and some have
concluded that biological factors must be
taken into account in order to explain
esthetic experience (Burke 1757; Paul
1988). More recently, in the emerging field
o f  neuroesthetics, neuroscientists
speculated that esthetic experience is a
product of brain function and is closely
linked to perceptual processes (Cavanagh
2005; Gregory et al. 1995; Livingstone
2002; Rentschler et al. 1988; Werner and
Ratliff 1999; Zeki 1999). Following this
general idea, we hypothesized that esthetic
art is a phenomenon of resonance between
the artist's visual system and his creations
(Redies 2008). In our model, this resonant
state of neural activity is purposefully
induced by the artist through a constant
feed-back between the work of art being
created and the artist's visual system.

In a search for possible neuronal
mechanisms that are linked to esthetic
perception, we previously measured
Fourier statistics in graphic art from
diverse periods and countries of the
Western hemisphere (Redies et al. 2007).
Results showed that, on average, artists
create their works of art with fractal-like
statistical properties, independent of the
cultural variables present in the set of
images analyzed. These fractal-like
properties are reflected in a 1/f2 Fourier
power spectrum (or 1/f amplitude
spectrum; f: spatial frequency) and imply
that works of graphic art display scale
invariance. Similiar fractal-like statistical
properties have been demonstrated for
natural scenes (Burton and Moorhead

1987; Field 1987; Olshausen and Field
2004; Ruderman, 1997; Ruderman and
Bialek, 1994; Simoncelli and Olshausen
2001; Tolhurst et al. 1992).

Fractal structure was previously
detected in the abstract paintings by
Jackson Pollock (Taylor et al. 1999), and
image statistics similar to those of natural
scenes have been found also in a set of
color paintings from diverse Western and
Asian cultures (Graham and Field 2007).
Moreover, human observers show a
general preference for fractal-like
structures in landscape silhouettes
(Hagerhall et al. 2004). We proposed that
this similarity between natural scenes and
esthetic visual art relates to the fact that
both types of stimuli can be perceived as
beautiful by human observers (Redies et al.
2007; Redies 2008).

In the present study, we examined a
favorite subject matter of artists, human
faces. Photographic images of human faces
do not display fractal-like, scale-invariant
statistics and the slope of the curve in the
log-log plot of spectral power (amplitude
squared) versus spatial frequency is steeper
than for natural scenes (Bosworth et al.
2006; Torralba and Oliva 2003). We asked
whether artists render human faces with
the same statistics as photographs of faces.
Our results for a large set of graphic art of
Western provenance show that this is not
the case. Paradoxically, artists portrait
human faces with scale-invariant Fourier
statistics that are characteristic of complex
natural scenes. This finding suggests that
artists might have implicit knowledge of
complex scenes statistics (or of unknown
rules associated with complex scene
statistics) and prefer these statistics or rules
in their creations.

Material and Methods

Image Data
Two photographic face databases (1, 2), a
natural scene database (3) and two
databases containing portraits by artists (4,
5) were analyzed.
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Figure 1. Examples of the images analyzed. A-C.
Examples from the Groningen database of natural
scenes (van Hateren and van der Schaaf 1998). D-
F.  Examples from the Yale face database B
(Georghiades et al. 2001). G-I. Examples from the
AR face database (Martinez and Benavente 1998).
K-L. Examples of padded images of monochrome
portraits by artists (K , drawing by Martin
Schongauer, about 1465; L, drawing (self-portrait)
by Caspar David Friedrich, 1820; and P, drawing
by Julius Schnorr von Carolsfeld, 1817. N-P.
Details displaying the face with an eye distance
similar to that of the photographic faces in D-I.
Slope constants and deviations from the fitted line
(in parentheses) were: A, –1.93 (0.005); B, –1.73
(0.002); C , –2.00 (0.008); D , –3.37 (0.003); E ,
–3.31 (0.004); F, –3.28 (0.001); G, –3.50 (0.048);
H, –3.69 (0.005); I, –3.68 (0.124); K, –1.84 (0.008);
L , –1.96 (0.046); M , –2.30 (0.024); N , –1.84
(0.031); O, –1.87 (0.043); and P, –2.09 (0.041). The
images shown in K-M  were reproduced with
p e r m i s s i o n  f r o m  " D a s  B e rliner
Kupferstichkabinett", Akademischer Verlag, Berlin,
1994 (inventary numbers: K, 976-1; L, 916-2; and
M , 5212; © Staatliche Museen zu Berlin,
Kupferstichkabinett).

(1) The Yale face database B
(Georghiades et al. 2001) consists of
monochrome images of 10 people that
were photographed with 9 different poses
under 64 illumination conditions in front of
a simple laboratory or office background.
Original images were 640 by 480 pixels.

(2) The AR face database (Martinez
and Benavente 1998) contains color
images of 126 people with different facial
expressions, illumination conditions and
occlusions, photographed on a uniformly
bright background. Image size was 768 by
576 pixels. Images were converted to
grayscale values.

Centered passport-type details of 480
by 480 pixels (Yale face database) or 576
by 576 pixels (AR face database) were cut
from each image for analysis. Examples
are shown in Figure 1D-I.

(3) For comparison, images from the
Groningen natural scene database (van
Hateren and van der Schaaf 1998) were
analyzed. The same dataset of 208 images
analyzed previously (Redies et al. 2007)
was used. Centered details of 1024 by
1024 pixels were cut from the original
monochrome images of 1536 by 1024
pixels. Examples are shown in Figure 1A-
C.

(4) A database of 306 portraits by
artists was generated. Reproductions were
digitized from various art books by a
calibrated scanner (Perfection 3200 Photo,
Seiko, Epson Corporation, Nagano, Japan).
No compression or image enhancement
algorithms were applied. Images were
scanned in 8-bit grayscale at a resolution of
at least 1024 pixels width and length. The
database  consisted  of  monochrome or
lightly colored (washed) works on paper
(graphic art). The portraits represented
various cultural backgrounds from the
Western hemisphere and were created by
artists from different countries and
centuries, employing different techniques
(Table 1).

(5) Using the same scanning
procedure, calibrated scans were obtained
from reproductions of colored portraits (oil
paintings) that originated from a cultural



-   4   -

background similar to that of the
monochrome portraits. Color images were
converted to grayscale using the YIQ
transform where luminance is expressed as
the sum of the weighted contributions from
the RGB channels (relative weights: R,
0.3;  G, 0.59; B, 0.11), as previously done
in another study of colored art images
(Graham and Field 2007).

The scanner was calibrated for
gamma gradation with the IT8 target
printed on reflective paper (LaserSoft
Imaging, Kiel, Germany). The target
displayed 24 gray values of measured
luminances. A grayscale conversion table
was generated that allowed transformation
of all monochrome scans to linearized gray
scale values. For color scans, the scanner
was gamma calibrated with the same target
using the SilverFast Ai Professional Scan
Software, version 6.5 (LaserSoft Imaging).

The reproductions chosen for
analysis were of relatively large size and
high quality and displayed works of art
with no or only minor defects (paper cuts,
stains, folds etc.). In all portraits, faces
covered a large part of the image.

The artistic portrait database was
analyzed in two different formats. First, as
described previously, the scanned images
were padded according to square ones by
adding a uniform border with a gray value
equal to the average gray value in the
image (Redies et al. 2007). Examples are
shown in Figure 1K-M.

Second, square details of the
portraits were generated showing face,
neck and shoulders of the portrayed
persons at a magnification comparable to
that of the photographic face databases
(Fig. 1N-P). For normalization, eye
distance was measured (front views) or
estimated on the basis of the distance
between eyes and the mouth (side views).

Image Analysis
Image analysis was carried out using
Matlab as described previously (Redies et
al. 2007). Briefly, each input image from
the test sets of different dimensions was
resized to 1024 x 1024 pixels by bicubic

interpolation. After transforming each
image into the frequency domain using
Fast Fourier Transform, the rotational
average of the power spectrum was
computed for each frequency. Power
spectrum (amplitude squared) and
frequency were analyzed in the log-log
plane (Fig. 2). Next, a least squares fit of a
line to the log-log power spectrum was
performed by fitting data points that were
binned at regular intervals. Only the
frequency range between 10 and 256
cycles per image was used for the fitting.
This restriction minimized the effect of
artefacts in our analysis, for example
artefacts due to low pass filtering,
rectangular sampling, raster screen or noise
in the images. The result for each image is
the slope of the line and the deviation of
the data points from that line, calculated as
the sum of the squares of the deviations of
the data points, divided by the number of
data points.

In total, we analyzed five different
data sets, consisting of natural scenes (208
images), photographic images of faces
(Yale face database B, 5776 images; AR
face database, 3313 images), monochrome
portraits by artists (306 images) and
colored oil portraits converted to grayscale
values (141 images).

Results

In Figure 2, Fourier spectral power of two
representative images from the databases is
plotted as a function of spectral frequency.
In the log-log plane, the binned data points
deviate only slightly from the straight
fitted line, within the frequency range
analyzed. However, the two fitted lines
differ in their slope. The fitted line of the
face photograph is steeper (slope of –3.69)
than that of the artist's rendering of a
human face (slope of –1.84). A slope
constant of about –2 (or -1 if spectral
amplitude instead of power is plotted)
indicates that the image has scale-invariant
or fractal-like properties, as previously
shown for natural (complex) scenes
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(Burton and Moorhead 1987; Field 1987;
Olshausen and Field 2004; Ruderman,
1997; Ruderman and Bialek, 1994;
Simoncelli and Olshausen 2001; Tolhurst
et al. 1992). Close-up views of simple
objects generally result in steeper slopes
(Bosworth et al. 2006; Redies et al. 2007;
Torralba and Oliva 2003).

Figure 2. Example of the Fourier spectral analysis.
In the log-log plane, Fourier power (amplitude
squared) was plotted as a function of spectral
frequency. A line was fitted to values that were
binned at regular logarithmic intervals between 10
to 256 cycles per image (dots). The dashed and
solid lines represent results for the images
displayed in Figure 1H and K, respectively. Slopes
and deviations from the fitted line are –3.69 and
0.005 (for Fig. 1H) and –1.84 and 0.007 (for Fig.
1K).

Figure 3 shows scatter diagrams with
the slope of each image plotted on the X
axis and the deviations from the fitted lines
plotted on the Y axis, for each of the image
datasets analyzed. The majority of images
can be fitted well by a straight line, as
indicated by the small deviations of the
data points from the fitted line.

Figure 3. Results of the Fourier spectral analysis.
Each dot in the scatter diagrams represents the
slope of the fitted line for one image and the
deviation of the measured data points from the
fitted line for that image. Data shown in C are from
Redies et al. (2007). Av. slope, average slope for
the set of images.
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The average slopes are –3.26 for the Yale
face database (Fig. 3A) and –3.54 for the
AR face database (Fig. 3B). This
difference is probably due to the office
background in the Yale face database.
After replacing this background by a white
background in 30 randomly selected
images from the Yale face database, the
slope became more negative for all images;
the average slope for the 30 images shifted
significantly from –3.28 (+/- 0.12 SD) to
–3.57 (+/- 0.15 SD; p<0.0001, paired t-
test).

For natural scenes (Fig. 3C) and
monochrome portraits (Fig. 3D), slopes
were significantly higher than for the face
photographs (-2.03 and -2.18, respectively;
non-parametric statistical analysis by
Kruskal-Wallis test with Dunn's multiple
comparison post-test, p<0.001). For color
(oil) portraits that were converted to
monochrome images, the average slope
was –2.89 (Fig. 3F), which is significantly
more negative than the slope for natural
scenes or monochrome portraits (p<0.001)
and significantly more positive than the
slope for the two face photograph
databases (p<0.001).

The difference between the slopes of
monochrome portraits and face
photographs may be due to the fact that, in
some of the portraits, faces were viewed
from a larger distance and were embedded
in complex scenes. As an index of face size
in the padded portraits, the eye distance
was expressed as a percentage of image
dimension. Average eye distance was
19.6% of image dimension (+/- 1.9 SD) in
the Yale face database, and 19.7% (+/- 1.4
SD) in the AR face database, compared to
15.5% (+/- 4.6 SD) in the portrait database.
Figure 4 shows the dependency of the
measured slope constants on the eye
distance for the monochrome portraits. The
two variables did not significantly correlate
with each other (Spearman correlation
coefficient r=-0.003). We repeated our
analysis for details of the portraits, which
were enlarged in size so as to match
approximately the size of the photographed
faces. For the portrait details (Fig. 1N-P),

average eye distance was 20.3% (+/- 5.8
SD). The mean slope for this dataset was
–2.12 (+/- 0.30 SD; Fig. 3E), which is
close to the average slope of the padded
portraits (-2.18; Fig. 3D).

Figure 4. Slope of the fitted lines plotted as a
function of eye distance for the 306 padded images
of monochrome portraits. Eye distance was
expressed in percent of the image dimension.

Figure 5. Average curves for the different
categories of face images and natural scenes.

For the face details, there were only small
or no significant differences in the average
slope constants between faces painted on
homogeneous versus complex background,
between persons portrayed with and
without headdress, between faces of
children, women, and men with and
without beards, or between front views and
side views of faces (Table 1). Also,
cultural variables, such as techniques,
centuries and country of origin had only a
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small or no significant influence on the
slopes (Table 1).

Table 1. Slopes of the fitted line for portraits by
artists (details), calculated separately for different
cultural and other variables

Slope
(mean ± SD)

n

All -2.12 ± 0.30 306
Background

Homogeneous -2.11 ± 0.29 195
Complex -2.13 ± 0.31 111

Headdress

No -2.11 ± 0.30 188
Yes -2.13 ± 0.29 118

Gender
Child -2.09 ± 0.25 26
Women -2.14 ± 0.30 46
Man, without beard -2.10 ± 0.30 145
Man, with beard -2.13 ± 0.32 89

View
Front -2.11 ± 0.30 253

Side -2.15 ± 0.28 53
Century

15th Century -1.95 ± 0.16 20
16th Century -2.10 ± 0.24 89
17th Century -2.05 ± 0.36 34
18th Century -2.18 ± 0.16 18
19th Century -2.16 ± 0.37 50
20th Century -2.16 ± 0.32 95

Country
Italy -2.14 ± 0.27 57
Flanders -1.87 ± 0.26 34
France -2.24 ± 0.37 45
Germany -2.12 ± 0.26 150
Other countries -2.14 ± 0.32 20

Techniques
Etching -2.04 ± 0.33 50

Engraving -2.08 ± 0.24 17
Lithograph -2.20 ± 0.23 27
Woodcut -2.37 ± 0.44 13
Charcoal, chalk -2.16 ± 0.26 100
Pencil, silver point -2.02 ± 0.23 59
Pen drawing -2.05 ± 0.33 31
Brush drawing -2.32 ± 0.37 9

Values are means ± standard deviations (SD).
n: number of images analyzed in each category.

In Figure 5, the logarithmic average of all
spectral power curves for the different
image categories is plotted as a function of
spectral frequency in the log-log space.
The curves for natural scenes and portraits
by artists are more shallow than those for
photographs of faces.

The scanner used for digitizing the
reproductions of portraits from art books

was calibrated for linearized conversion of
color and brightness into pixel values (see
Methods). However, we cannot control for
gamma gradation during reproduction in
art books. We therefore asked what effect
moderate degrees of gamma gradation
have on the slopes measured by us. Figure
6 shows that the effect of gamma values
between 0.25 and 4 is minor.

Figure 6. Average slopes of the fitted lines plotted
as a function of gamma gradation applied to three
different image datasets (Yale face database,
natural scenes and details of portraits by artists).
From the Yale face database, a subset of 300
randomly selected images were used for the
analysis.

Discussion

Methodological considerations
Our analysis reveals that artists endow
human faces with image statistical
properties similar to those of complex
natural scenes (Burton and Moorhead
1987; Field 1987; Olshausen and Field
2004; Ruderman, 1997; Ruderman and
Bialek, 1994; Simoncelli and Olshausen
2001; Tolhurst et al. 1992).  Before
accepting this result, trivial explanations
for our findings and experimental artifacts
must be excluded. We therefore carried out
control experiments, which show that the
present result is unlikely to originate in
reproduction artefacts and that it cannot be
explained by systematic differences in the
complexity of the visual patterns
surrounding the faces in the portraits.
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A number of artefacts might possibly
influence the measurements of the slopes
in the log-log plots, for example artefacts
caused by reproducing art images in books.
One such artefact may be non-linearities in
the transformation of color and brightness
to pixel values during photography,
scanning and printing. Such non-linearities
are commonly expressed as changes in
gamma gradation. Here, we demonstrate
that moderate degrees of gamma gradation,
which can be anticipated in the
reproduction process, have only a minor
effect on the values of the slope constant
measured in our experiment (Fig. 6). A
similar robustness of the slopes has been
previously reported in natural scenes for
changes in contrast or in gray value offset
(for a review, see Ruderman 1997). The
effect of other reproduction artefacts has
been minimized by restricting the
frequency range in the analysis (see
Methods). It is therefore unlikely that
reproduction artefacts have a major effect
on our results. The frequency range
restriction may explain why other
investigators, who did not restrict the
frequencies range, obtained slightly lower
values for the slopes (Graham and Field
2007; Tolhurst et al. 1992).

Secondly, the three databases of
human faces differ in the complexity of the
background shown in the images. Images
from the AR Face Database show the face,
neck and shoulders of each person on a
uniform bright background. Images from
the Yale Face Database show similar body
parts in front of an office background,
resulting in less negative slope values.
Images from the art portrait database
generated by us depict persons or faces at
variable distances and with backgrounds of
different degrees of complexity. It is thus
possible that the higher slope values reflect
a higher complexity of the rest of the
image rather than of the face. This
possibility, however, was excluded by
normalizing the eye distance in the
portraits to those of the photographic faces.
Moreover, we did not observe any
difference in the slopes between faces

portrayed on a complex background and
faces portrayed on a homogeneous
background (Table 1).

Thirdly, artists often portray humans
with elaborate accessories, such as fancy
hats, which represent complex visual
stimuli and may also result in higher slope
constants. However, slopes of portraits
with and without headdress were not
significantly different from each other
(Table 1). Also, the absence or presence of
beards, which may also induce complexity
in the portraits, did not influence the
results (Table 1).

A paradoxical shift of image statistics in
artists' portraits
Our results suggest that artists have an
implicit knowledge of image statistics and
tend to shift the statistics of human faces in
their portraits toward the fractal-like
statistics of complex natural scenes. As a
result, artists portray human faces with
statistics different from those of face
photographs. This paradoxical shift
demonstrates that artists do not necessarily
strive to represent natural objects as they
are in reality. Rather, they follow
unspecified rules that call for an
implementation of image statistics similar
to those of complex natural scenes. A
similar conclusion has been reached for
biased samples of non-representational
(abstract) art, including oil paintings
(Redies et al. 2007; Taylor 2002; Taylor et
al. 1999).

The present results are in line with
previous observations for a large set of
graphic art of the Western hemisphere
(Redies et al. 2007). This study showed
that, on average, graphic art is created by
artists with the fractal-like statistics of
natural scenes. However, in our previous
study, we did not compare the statistics of
art images and their natural counterparts
and most works of art included in our
previous study depicted complex scenes.
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Sampling bias and the universality of
image statistics in art
The artistic portraits analyzed here
represent a biased sample of art images.
First, we demonstrate fractal-like
properties only for monochrome portraits
or portraits, which were washed with thin
color and converted to monochrome
images. The inclusion of the color
dimension in our analysis would have
complicated the analysis.

After conversion to monochrome
images, fully colored portraits (color oil
paintings) show Fourier spectral statistics
in between those of photographed faces
and natural scenes (Fig. 3F). Color is an
important attribute to art and adds to its
esthetic appearance. It may thus come as
no surprise that the luminance component
of color art has different Fourier statistics
than that of monochrome art. Graham and
Field (2007) recently obtained Fourier
statistics similar to natural scenes also for
monochrome renderings of color paintings.
Their biased sample of art, however,
contained complex scenes and was not
restricted to portraits, which may explain
the difference in the results.

Another bias stems from the fact that
we selected works of art from well-known
artists that have been preserved in
prestigious museums. We assume that the
esthetic value of these works of art is an
important reason why they have been
conserved, in some cases over many
centuries. Due to this bias, conclusions
about the image statistics of art reached in
the present study likely apply only to
esthetic forms of art but not to other,
contemporary forms of non-esthetic art
(see discussion in Redies 2008).

Despite these biases, our sample of
graphic art contains representational art
from a large variety of different cultural
backgrounds within the Western
hemisphere and different graphic
techniques. As shown previously for a set
of Western graphic art, which depicted
multiple subject matters and included
abstract art (Redies et al. 2007), the
dependence of the slopes on the cultural

variables is small, if significant at all
(Table 1). Similar statistics were found for
the abstract drip paintings of Jackson
Pollock (Taylor et al. 1999) and in a set of
paintings that included a large proportion
of art from the Middle East and Asia
(Graham and Field 2007). The widespread
occurrence of this finding in different
forms of art and artistic techniques and in
various human cultures is striking, but its
universality in all form of esthetic art
remains to be established.

Questions and hypotheses
Fractal-like properties may be a general
attribute of esthetic visual displays but
cannot be a sufficient criterion for esthetic
art for several reasons. First, computer-
generated artificial images with 1/f2 power
statistics (Lee and Mumford 1999;
Olshausen and Field 2000; Ruderman
1997) do not necessarily look esthetically
pleasing. Second, the range of slope values
measured for artistic portraits in the
present study overlaps extensively with
examples of image classes that are little or
not at all esthetic (Redies et al. 2007).
Third, there is a clear difference in the
profoundness of esthetic appeal between
art objects and natural scenes; these
differences do not correlate with
differences in the measured slopes.

If 1/f2 power statistics are not
sufficient to induce esthetic perception,
what is the reason for artists to shift image
statistics in portraits? Does this shift
provide insight into the sensory principles
underlying esthetic perception? In an
attempt to address this question, we would
like to raise the following two speculative
points:

(1) The visual system is adapted to
the statistics of complex natural scenes by
evolution and development (Field 1987;
Hoyer and Hyvärinen 2002; Olshausen and
Field 1996; Parraga et al. 2000; Simoncelli
and Olshausen 2001; Vinje and Gallant
2000). In turn, artists adapt their creations
to functional features intrinsic to the
human visual system (Zeki 1999). The
present results are compatible with the



-   10   -

hypothesis (Redies 2008) that the
functional features, to which artists induce
resonance in their visual system, are
related, in some unknown way, to the
adaptation of the visual system to natural
scenes. Following this idea, the 1/f2 power
statistics discovered in visual art should be
thought of as a corollary of other, as of yet
unidentified, principles of esthetic
perception. Artists may not be able to
express these statistical principles in
precise, every-day language (Redies 2008).
For example, Fourier analysis can hardly
be carried out in the conscious human
mind. Indeed, Fourier analysis is a
scientific concept that most artists cannot
have been aware of until the 20th century.

(2) Alternatively, it may be argued
that artists often aim to convey or
emphasize particular traits of their subjects
(for example, personality traits or
expressed emotions). To achieve this goal
in the artistic portraits, artists might use
specific artistic techniques (for example,
sketching with lines or fine textures) that
carry more energy in the higher frequency
range. However, in art images depicting
complex (natural) scenes with similar
techniques, the frequency spectra of the
depicted scenes did not change on average
(Redies et al., 2007). Therefore, graphic art
is not generally associated with an increase
in higher frequencies. Moreover, as
discussed above, other artistic techniques
result also in art images with scale-
invariant properties.
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