Group leader
Systembiologie der Sepsis/König Lab, CSCC, Universitätsklinikum Jena
Prof. Dr. Rainer König
Systemsbiology Research Group
Institute for Infectious Diseases and Infection Control (IIMK)
Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
rainer.koenig@uni-jena.de
Tel: +49 3641 9 39 78 30
Main interest
Infectious diseases, viral infections, machine learning applications in cellular systems, pattern recognition in cellular networks, gene regulatory networks, clinical data analyses
Academic career
Since March 2013 | Professor at Jena University Hospital, research group leader |
Feb 07 – March 13 |
Research group leader at the Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg |
Dec 04 – Feb 07 |
Postdoctoral fellow at Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg |
Jan 2000 - Dec 04 | Postdoctoral fellow, German Cancer Research Center, Heidelberg |
Sep 99 – Jan 2000 |
Teacher at Bunsen-Gymnasium Heidelberg, Subjects: Mathematics and Physics |
Education
Dec 96 – Sep 99 | Ph.D. student, Heidelberg University and EMBL |
1989 – 1996 |
Studies in physics and mathematics at the universities of Freiburg, Sussex (United Kingdom), and Heidelberg |
1993 |
Bachelor's thesis, Title: "Deep Level Transient Spectroscopy" at the University of Sussex, United Kingdom |
Academic Degrees
June 2010 | Habilitation in Bioinformatics at the Faculty of Biosciences, Heidelberg University |
1999 |
Dr. sc. hum. in biochemistry, Medical Faculty, Heidelberg University |
1997 | State Examination in mathematics and physics, Heidelberg University |
1996 | Diploma in physics, Heidelberg University |
Selected publications
Kelch MA, Vera-Guapi A, Beder T, Oswald M, Hiemisch A, Beil N, Wajda P, Ciesek S, Erfle H, Toptan T, Koenig R (2023). Machine learning on large scale perturbation screens for SARS-CoV-2 host factors identifies β-catenin/CBP inhibitor PRI-724 as a potent antiviral, Front Microbiol, 14, 1193320.
Poos AM, Schröder C, Jaishankar N, Röll D, Oswald M, Meiners J, Braun DM, Bauer C, Frank L, Gunkel M, Spilger R, Wollmann T, Polonski A, Makrypidi-Fraune G, Fraune C, Graefen M, Chung I, Stenzel A, Erfle H, Rohr K, Baniahmad A, Sauter G, Rippe K, Simon R & König R (2022). PITX1 is a regulator of TERT expression in prostate cancer with prognostic power, Cancers, 14, 1267.
Beder T, Aromolaran O, Dönitz J, Tapanelli S, Adedeji EO, Adebiyi E, Bucher G & Koenig R (2021). Identifying essential genes across eukaryotes by machine learning, NAR Genomics and Bioinformatics, 3, lqab110.
Aromolaran O, Beder T, Adedeji E, Ajamma Y, Oyelade J, Adebiyi E, Koenig R. Predicting host dependency factors of pathogens in Drosophila melanogaster using machine learning, Comput Struct Biotechnol J, 19, 4581.
Jakob, CEM, Mahajan UM, Oswald M, Stecher M, Schons M, Mayerle J, Rieg S, Pletz M, Merle U, Wille K, Borgmann S, Spinner CD, Dolff S, SchererC, Pilgram L, Rüthrich M, Hanses F, Hower M, Strauß R, Massberg S, Görkem Er A, Jung N, Vehreschild JJ, Stubbe H, Tometten L & König R, on behalf of the LEOSS Study group (2021). Prediction 1 of COVID-19 deterioration in high-risk patients at diagnosis - an Early Warning Score for Advanced Covid-19 developed by machine learning, Infection, 50, 359.
König R, Kolte A, Ahlers O, Oswald M, Krauss V, Roell D, Sommerfeld O, Dimopoulos G, Tsangaris I, Antoniadou E, Jaishankar N, Bogatsch H, Löffler M, Rödel M, Garcia-Moreno M, Tuchscherr L, Sprung CL, Singer M, Brunkhorst F, Oppert M, Gerlach H, Claus RA, Coldewey SM, Briegel J, Giamarellos-Bourboulis EJ, Keh D, Bauer M (2021) Use of IFNγ/IL10 ratio for stratification of hydrocortisone therapy in patients with septic shock, Frontiers Immunol, 12, 607217
Hörhold F, Eisel D, Oswald M, Kolte A, Röll D, Osen W, Eichmüller SB, König R (2020) Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol 16, e1007657.
König R, Cao X, Oswald M, Forstner C, Rohde G, Rupp J, Witzenrath M, Welte T, Kolditz M, Pletz M (2019) Macrolide combination therapy for hospitalized CAP patients? An individualized approach supported by machine learning, European Respiratory Journal 54, 11.
Poos AM, Maicher A, Dieckmann AK, Oswald M, Eils R, Kupiec M, Luke B, König R (2016) Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast, Nucleic Acids Research, 44, e93.