Image Processing II Color images Part 1 – Additive and subtractive color mixing

Color Fundamentals

Spectral sensitivity of the photoreceptors

Fig. from: OpenStax College, Anatomy & Physiology. https://openstax.org/details/books/anatomy-and-physiology, p.620,

Color Fundamentals Additive color mixing

Standard primary colors defined in 1931 by the Commission Internationale de l'Eclairage (CIE)

Color Fundamentals
A prototype for an RGB output device: The color cathode ray tube (CRT)

Color Fundamentals

Subtractive color mixing and the CMY color space

When the green component is extracted from white light, the remaining light causes the sensation "purple",

Exposure to daylight on a cloudy day

Illumination with a 85 W photo lamp (5500K)

Exposure to room light (LEDs)

Illumination with a flash light

Color Fundamentals

Black-body radiation

Color Vision Spectral variations in natural light

Fig. from: Wyszecki & Stiles, Color science: Concepts and methods, quantitative data and formulae, Wiley (1982).

Color Vision

Artificial light sources: The xenon arc lamp

Color Vision

Artificial light sources: Gas discharge lamps

Color Vision

Artificial light sources: Light emitting diodes (LEDs)

Color Vision Artificial light sources: White light LEDs

The activation of each photoreceptor is the integral of the product of three spectra:

 $A = k \int E(\lambda) O(\lambda) S(\lambda)$

$$\begin{split} \mathsf{E}(\lambda) &= \text{spectral power distribution of the illuminant} \\ \mathsf{O}(\lambda) &= \text{object spectrum, i.e. reflectance or transmittance} \\ \mathsf{S}(\lambda) &= \text{Sensitivity of the photoreceptor} \\ \mathsf{k} &= \text{scaling factor} \end{split}$$

