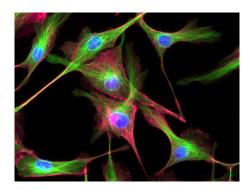

Exercises Week #3: Color Images

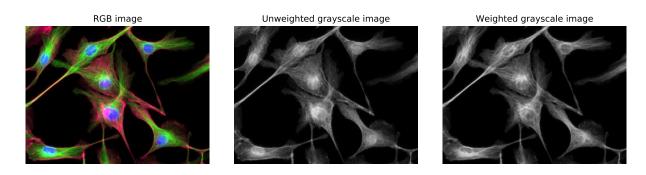
Solutions should be submitted via moodle <u>before</u> May 4th, 2021 8.00 a.m. (CET)


Exercise 1 – Conversion of RGB to grayscale images (Difficulty level: easy/medium)

RGB images are stored as three-dimesional NumPy arrays. The first two dimensions are the pixel coordinates (the first index is the y coordinate, the second index is the x coordinate). The last index enumerates the three color channels: red (\mathbf{R}), green (\mathbf{G}) and blue (\mathbf{B}). For example, to create a 24-bit rectangular RGB image with a red lower left corner, a green upper left corner, a blue lower right corner and a gray upper right corner, you can do the following:

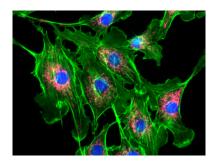
```
nx, ny = 256, 200
image = np.zeros((ny, nx, 3), dtype='uint8')
# lower left corner red
image[ny//2:, :nx//2] = [255, 0, 0]
# upper left corner green
image[:ny//2, :nx//2] = [0, 255, 0]
# lower right corner blue
image[ny//2:, nx//2:] = [0, 0, 255]
# lower right corner gray
image[:ny//2, nx//2:] = [127, 127, 127]
```


We will study the RGB image FluorescentCells01.jpg (which should be downloaded from the moodle page and placed in the same folder as the template):

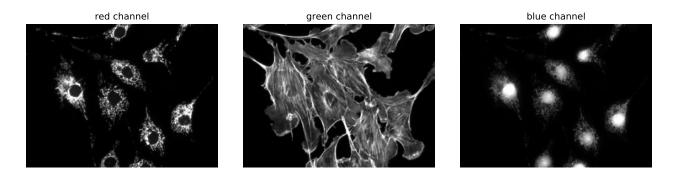


Task 1A. (Difficulty level: easy) Read the image FluorescentCells01.jpg and print some information about it such as the **shape** and **data type** of the image, as well as the **minimum** and **maximum** pixel value.

Task 1B. (Difficulty level: easy) Convert the image to a grayscale image by averaging the pixel values of the individual color layers. The data type of the grayscale image should be identical to the data type of the input image.

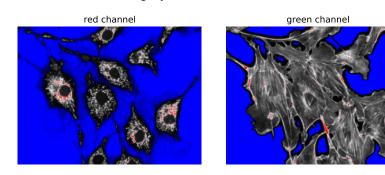

Task 1C. (Difficulty level: medium) To account for differences in the sensitivity of the photoreceptors in our retina, a weighted sum of the R, G, and B components should be formed where the weights for the color channels are 0.2989, 0.5870, and 0.1140, respectively.

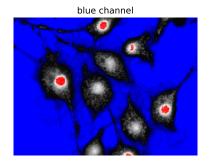
Task 1D. (Difficulty level: easy) Show the original RGB image and both grayscale images.



Exercise 2 – Showing under/overflow in a color image (Difficulty level: easy/medium)

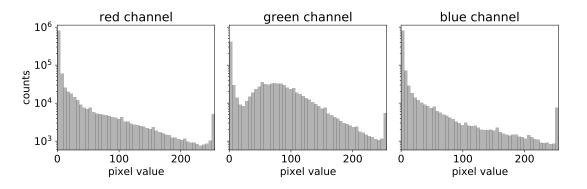
This exercise studies the image FluorescentCells03.jpg (available on the moodle page):

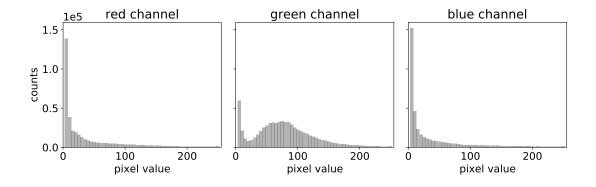



Task 2A. (Difficulty level: easy) Read the image and show the individual layers as grayscale images.

Task 2B. (Difficulty level: medium) For each channel show, pixels with intensity

- smaller than 1% of the maximum intensity in blue (underflow)
- greater than 99% of the maximum intensity in red (overflow)
- and all others in gray




Exercise 3 – Image histograms (Difficulty level: medium)

Now we study the distribution of pixel values in the RGB image FluorescentCells03.jpg.

Task 3A. Image histograms (Difficulty level: medium) Read the image and show histograms of the pixel values of the individual layers. Use a logarithmic scale for the counts.

Task 3B. (Difficulty level: medium) Show image histograms for the individual layers excluding the intensities of pixels suffering from under- or overflow (as defined in 2B).

