
IMAGE PROCESSING I
Computer Technology

Michael Habeck
November 11, 2020

michael.habeck@uni-jena.de

Microscopic Image Analysis
University Hospital Jena

OVERVIEW

∙ An abridged history of computers
∙ Computer systems organization
∙ Logic gates and Boolean algebra
∙ Radix number systems
∙ Operators and data types in Python

1

AN ABRIDGED HISTORY OF COMPUTERS∗

Year Name Made by Comments

1623 Calculating clock Schickard Sketches of two mechanical calculators
1642 Pascaline Pascal Operated by rotating wheels
1673 Step reckoner Leibniz First true four-function calculator
1822 Difference engine Babbage Mechanical calculator for tabulating polynomials
1834 Analytical Engine Babbage First attempt to build a digital computer
1936 Z1 Zuse First working relay calculating machine
1943 COLOSSUS British gov’t First electronic computer
1944 Mark I Aiken First American general-purpose computer
1946 ENIAC Eckert/Mauchley Modern computer history starts here
1949 EDSAC Wilkes First stored-program computer
1951 Whirlwind I M.I.T. First real-time computer
1952 IAS Von Neumann Most current machines use this design
1960 PDP-1 DEC First minicomputer (50 sold)
1961 1401 IBM Enormously popular small business machine
1962 7094 IBM Dominated scientific computing in the early 1960s
1963 B5000 Burroughs First machine designed for a high-level language
1964 360 IBM First product line designed as a family
1964 6600 CDC First scientific supercomputer

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

∗See wikipedia entry on the history of computing hardware for more information
2

https://en.wikipedia.org/wiki/Timeline_of_computing_hardware_before_1950

AN ABRIDGED HISTORY OF COMPUTERS∗

Year Name Made by Comments

1965 PDP-8 DEC First mass-market minicomputer (50,000 sold)
1970 PDP-11 DEC Dominated minicomputers in the 1970s
1974 8080 Intel First general-purpose 8-bit computer on a chip
1974 CRAY-1 Cray First vector supercomputer
1978 VAX DEC First 32-bit superminicomputer
1981 IBM PC IBM Started the modern personal computer era
1981 Osborne-1 Osborne First portable computer
1983 Lisa Apple First personal computer with a GUI
1985 386 Intel First 32-bit ancestor of the Pentium line
1985 MIPS MIPS First commercial RISC machine
1985 XC2064 Xilinx First field-programmable gate array (FPGA)
1987 SPARC Sun First SPARC-based RISC workstation
1989 GridPad Grid Systems First commercial tablet computer
1990 RS6000 IBM First superscalar machine
1992 Alpha DEC First 64-bit personal computer
1992 Simon IBM First smartphone
1993 Newton Apple First palmtop computer (PDA)
2001 POWER4 IBM First dual-core chip multiprocessor

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

∗See wikipedia entry on the history of computing hardware for more information
3

https://en.wikipedia.org/wiki/Timeline_of_computing_hardware_before_1950

AN ABRIDGED HISTORY OF COMPUTERS

from: www.computerhistory.org

4

www.computerhistory.org

AN ABRIDGED HISTORY OF COMPUTERS

from: www.computerhistory.org

5

www.computerhistory.org

ZEROTH GENERATION—MECHANICAL COMPUTERS

Wilhem Schickard Sketch of his machine Replica of Schickard’s machine

from: https://commons.wikimedia.org

6

https://en.wikipedia.org/wiki/Wilhelm_Schickard

ZEROTH GENERATION—MECHANICAL COMPUTERS

Blaise Pascal Replica of Pascal’s machine, the Pascaline

from: https://commons.wikimedia.org

7

https://en.wikipedia.org/wiki/Pascal's_calculator

ZEROTH GENERATION—MECHANICAL COMPUTERS

Gottfried Leibniz Replica of Leibniz’s stepreckoner

... it is beneath the dignity of excellent men to waste their time in
calculation when any peasant could do the work just as accurately
with the aid of a machine.

from: www.computerhistory.org

8

www.computerhistory.org

ZEROTH GENERATION—MECHANICAL COMPUTERS

Charles Babbage Replica of the analytical engine

from: wikipedia and www.computerhistory.org

9

https://en.wikipedia.org/wiki/Charles_Babbage
www.computerhistory.org

FIRST GENERATION—RELAY BINARY ADDER

George Stibitz Stibitz’s Model K binary adder

from: M. M. Irvine: IEEE Annals of the History of Computing (2001) 23:22–42

10

https://ieeexplore.ieee.org/document/948904

FIRST GENERATION—VACCUM TUBES

Colossus Mark 2

from: wikipedia

11

https://en.wikipedia.org/wiki/Colossus_computer

FIRST GENERATION—VACCUM TUBES

ENIAC (Electronic Numerical Integrator and Computer)

from: wikipedia

12

https://en.wikipedia.org/wiki/ENIAC

SECOND GENERATION—TRANSISTORS

TX-0 (Transistorized eXperimental computer 0)

from: wikipedia

13

https://en.wikipedia.org/wiki/TX-0

THIRD GENERATION—INTEGRATED CIRCUITS

IBM System/360

from: wikipedia

14

https://en.wikipedia.org/wiki/IBM_System/360

FOURTH GENERATION—VERY LARGE SCALE INTEGRATION

VLSI Chip Today’s computers

from: wikipedia and http://www.bytemods.com/mods/54/beer-case-mediacenter

15

https://en.wikipedia.org/wiki/VLSI_Technology
http://www.bytemods.com/mods/54/beer-case-mediacenter

CONTEMPORARY MULTILEVEL MACHINES

SEC. 1.1 STRUCTURED COMPUTER ORGANIZATION 5

1.1.2 Contemporary Multilevel Machines

Most modern computers consist of two or more levels. Machines with as
many as six levels exist, as shown in Fig. 1-2. Level 0, at the bottom, is the ma-
chine’s true hardware. Its circuits carry out the machine-language programs of
level 1. For the sake of completeness, we should mention the existence of yet an-
other level below our level 0. This level, not shown in Fig. 1-2 because it falls
within the realm of electrical engineering (and is thus outside the scope of this
book), is called the device level. At this level, the designer sees individual transis-
tors, which are the lowest-level primitives for computer designers. If one asks how
transistors work inside, that gets us into solid-state physics.

Level 1

Level 2

Level 3

Level 4

Level 5

Level 0

Problem-oriented language level

Translation (compiler)

Assembly language level

Translation (assembler)

Operating system machine level

Microarchitecture level

Partial interpretation (operating system)

Instruction set architecture level

Hardware

Digital logic level

Interpretation (microprogram) or direct execution

Figure 1-2. A six-level computer. The support method for each level is indicated
below it (along with the name of the supporting program).

At the lowest level that we will study, the digital logic level, the interesting ob-
jects are called gates. Although built from analog components, such as transistors,
gates can be accurately modeled as digital devices. Each gate has one or more dig-
ital inputs (signals representing 0 or 1) and computes as output some simple func-
tion of these inputs, such as AND or OR. Each gate is built up of at most a handful
of transistors. A small number of gates can be combined to form a 1-bit memory,
which can store a 0 or a 1. The 1-bit memories can be combined in groups of (for
example) 16, 32, or 64 to form registers. Each register can hold a single binary

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

16

LOGIC GATES AND BOOLEAN ALGEBRA
Logic gates are physical implementations of Boolean functions with
two inputs 𝐴, 𝐵 and an output 𝑋1

Boolean functions can be represented by truth tables

Input 𝐴 Input 𝐵 Output 𝑋
0 0 𝑋1
0 1 𝑋2
1 0 𝑋3
1 1 𝑋4

1 represents TRUE, ON, etc.
0 represents FALSE, OFF, etc.

1General situation: 𝑛 input pins and 𝑚 output pins
17

LOGIC GATES AND BOOLEAN ALGEBRA
OR function

Input 𝐴 Input 𝐵 Output 𝑋

0 0 0
0 1 1
1 0 1
1 1 1

Mechanical OR gate

Electrical OR gate

Hydraulic OR gate

from: W. D. Hillis: The Pattern on the Stone

18

LOGIC GATES AND BOOLEAN ALGEBRA

NOT

𝐴 𝑋

𝐴 𝑋
0 1
1 0

AND

𝐴
𝐵 𝑋

𝐴 𝐵 𝑋
0 0 0
0 1 0
1 0 0
1 1 1

OR

𝐴
𝐵 𝑋

𝐴 𝐵 𝑋
0 0 0
0 1 1
1 0 1
1 1 1

19

LOGIC GATES AND BOOLEAN ALGEBRA

Any logical function can be constructed from NOT, OR, and AND gates

𝐴 𝐵 𝐶 𝐷 ⋯ 𝑋
0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 1 ⋯ 1 ⟶ 𝐴𝐵 𝐶 𝐷⋯
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 1 1 0 ⋯ 1 ⟶ 𝐴𝐵 𝐶 𝐷⋯
⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑋 = ⋯ + (𝐴𝐵 𝐶 𝐷⋯) + ⋯ + (𝐴𝐵 𝐶 𝐷⋯) + ⋯
where

𝐴 ↔ NOT(𝐴), 𝐴𝐵 ↔ AND(𝐴, 𝐵), 𝐴 + 𝐵 ↔ OR(𝐴, 𝐵)

20

LOGIC GATES AND BOOLEAN ALGEBRA

Another way to see that NOT, AND, OR suffice to represent any
Boolean function is by recursion

𝑋 = 𝑓(𝐴, 𝐵, 𝐶, 𝐷, …)
= 𝐴 𝑓(0, 𝐵, 𝐶, 𝐷, …) + 𝐴 𝑓(1, 𝐵, 𝐶, 𝐷, …)
= 𝐴𝐵 𝑓(0, 0, 𝐶, 𝐷, …) + 𝐴𝐵 𝑓(0, 1, 𝐶, 𝐷, …) + 𝐴𝐵 𝑓(1, 0, 𝐶, 𝐷, …) + 𝐴𝐵 𝑓(1, 1, 𝐶, 𝐷, …)
= …

21

NAND AND NOR

Can we simplify NOT, AND, OR any further?

NAND

𝐴
𝐵 𝑋

𝐴 𝐵 𝑋
0 0 1
0 1 1
1 0 1
1 1 0

NOR

𝐴
𝐵 𝑋

𝐴 𝐵 𝑋
0 0 1
0 1 0
1 0 0
1 1 0

22

CONSTRUCTING LOGICAL FUNCTIONS FROM NAND OR NOR

SEC. 3.1 GATES AND BOOLEAN ALGEBRA 149

In Fig. 3-1(b) two transistors are cascaded in series. If both V1 and V2 are
high, both transistors will conduct and Vout will be pulled low. If either input is
low, the corresponding transistor will turn off, and the output will be high. In other
words, Vout will be low if and only if both V1 and V2 are high.

In Fig. 3-1(c) the two transistors are wired in parallel instead of in series. In
this configuration, if either input is high, the corresponding transistor will turn on
and pull the output down to ground. If both inputs are low, the output will remain
high.

These three circuits, or their equivalents, form the three simplest gates. They
are called NOT, NAND, and NOR gates, respectively. NOT gates are often called
inverters; we will use the two terms interchangeably. If we now adopt the conven-
tion that ‘‘high’’ (Vcc volts) is a logical 1, and that ‘‘low’’ (ground) is a logical 0,
we can express the output value as a function of the input values. The symbols
used to depict these three gates are shown in Fig. 3-2(a)–(c), along with the func-
tional behavior for each circuit. In these figures, A and B are inputs and X is the
output. Each row specifies the output for a different combination of the inputs.

(b)

NAND
A

B

X

A B X

0 0 1

0 1 1

1 0 1

1 1 0

(c)

NOR
A

B

X

A B X

0 0 1

0 1 0

1 0 0

1 1 0

AND
A

B

X

(d)

A B X

0 0 0

0 1 0

1 0 0

1 1 1

OR
A

B

X

(e)

A B X

0 0 0

0 1 1

1 0 1

1 1 1

(a)

NOT

A

A X

X

0 1

1 0

Figure 3-2. The symbols and functional behavior for the five basic gates.

If the output signal of Fig. 3-1(b) is fed into an inverter circuit, we get another
circuit with precisely the inverse of the NAND gate—namely, a circuit whose output
is 1 if and only if both inputs are 1. Such a circuit is called an AND gate; its sym-
bol and functional description are given in Fig. 3-2(d). Similarly, the NOR gate can
be connected to an inverter to yield a circuit whose output is 1 if either or both in-
puts are 1 but 0 if both inputs are 0. The symbol and functional description of this
circuit, called an OR gate, are given in Fig. 3-2(e). The small circles used as part of
the symbols for the inverter, NAND gate, and NOR gate are called inversion bub-
bles. They are often used in other contexts as well to indicate an inverted signal.

The five gates of Fig. 3-2 are the principal building blocks of the digital logic
level. From the foregoing discussion, it should be clear that NAND and NOR gates
require two transistors each, whereas the AND and OR gates require three each. For

154 THE DIGITAL LOGIC LEVEL CHAP. 3

A + B

A + B

A

A

B

B

AB

AB

A

A

A

A

(a)

(b) (c)

A

B

A

B

Figure 3-4. Construction of (a) NOT, (b) AND, and (c) OR gates using only NAND

gates or only NOR gates.

gates (or perhaps with simpler gates, for example, two-input gates instead of four-
input gates). In the search for equivalent circuits, Boolean algebra can be a valu-
able tool.

As an example of how Boolean algebra can be used, consider the circuit and
truth table for AB + AC shown in Fig. 3-5(a). Although we have not discussed
them yet, many of the rules of ordinary algebra also hold for Boolean algebra. In
particular, AB + AC can be factored into A(B + C) using the distributive law. Fig-
ure 3-5(b) shows the circuit and truth table for A(B + C). Because two functions
are equivalent if and only if they have the same output for all possible inputs, it is
easy to see from the truth tables of Fig. 3-5 that A(B + C) is equivalent to
AB + AC. Despite this equivalence, the circuit of Fig. 3-5(b) is clearly better than
that of Fig. 3-5(a) because it contains fewer gates.

In general, a circuit designer starts with a Boolean function and then applies
the laws of Boolean algebra to it in an attempt to find a simpler but equivalent one.
From the final function, a circuit can be constructed.

To use this approach, we need some identities from Boolean algebra. Figure
3-6 shows some of the major ones. It is interesting to note that each law has two

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

23

CONSTRUCTING LOGICAL FUNCTIONS FROM NAND OR NOR

SEC. 3.1 GATES AND BOOLEAN ALGEBRA 149

In Fig. 3-1(b) two transistors are cascaded in series. If both V1 and V2 are
high, both transistors will conduct and Vout will be pulled low. If either input is
low, the corresponding transistor will turn off, and the output will be high. In other
words, Vout will be low if and only if both V1 and V2 are high.

In Fig. 3-1(c) the two transistors are wired in parallel instead of in series. In
this configuration, if either input is high, the corresponding transistor will turn on
and pull the output down to ground. If both inputs are low, the output will remain
high.

These three circuits, or their equivalents, form the three simplest gates. They
are called NOT, NAND, and NOR gates, respectively. NOT gates are often called
inverters; we will use the two terms interchangeably. If we now adopt the conven-
tion that ‘‘high’’ (Vcc volts) is a logical 1, and that ‘‘low’’ (ground) is a logical 0,
we can express the output value as a function of the input values. The symbols
used to depict these three gates are shown in Fig. 3-2(a)–(c), along with the func-
tional behavior for each circuit. In these figures, A and B are inputs and X is the
output. Each row specifies the output for a different combination of the inputs.

(b)

NAND
A

B

X

A B X

0 0 1

0 1 1

1 0 1

1 1 0

(c)

NOR
A

B

X

A B X

0 0 1

0 1 0

1 0 0

1 1 0

AND
A

B

X

(d)

A B X

0 0 0

0 1 0

1 0 0

1 1 1

OR
A

B

X

(e)

A B X

0 0 0

0 1 1

1 0 1

1 1 1

(a)

NOT

A

A X

X

0 1

1 0

Figure 3-2. The symbols and functional behavior for the five basic gates.

If the output signal of Fig. 3-1(b) is fed into an inverter circuit, we get another
circuit with precisely the inverse of the NAND gate—namely, a circuit whose output
is 1 if and only if both inputs are 1. Such a circuit is called an AND gate; its sym-
bol and functional description are given in Fig. 3-2(d). Similarly, the NOR gate can
be connected to an inverter to yield a circuit whose output is 1 if either or both in-
puts are 1 but 0 if both inputs are 0. The symbol and functional description of this
circuit, called an OR gate, are given in Fig. 3-2(e). The small circles used as part of
the symbols for the inverter, NAND gate, and NOR gate are called inversion bub-
bles. They are often used in other contexts as well to indicate an inverted signal.

The five gates of Fig. 3-2 are the principal building blocks of the digital logic
level. From the foregoing discussion, it should be clear that NAND and NOR gates
require two transistors each, whereas the AND and OR gates require three each. For

154 THE DIGITAL LOGIC LEVEL CHAP. 3

A + B

A + B

A

A

B

B

AB

AB

A

A

A

A

(a)

(b) (c)

A

B

A

B

Figure 3-4. Construction of (a) NOT, (b) AND, and (c) OR gates using only NAND

gates or only NOR gates.

gates (or perhaps with simpler gates, for example, two-input gates instead of four-
input gates). In the search for equivalent circuits, Boolean algebra can be a valu-
able tool.

As an example of how Boolean algebra can be used, consider the circuit and
truth table for AB + AC shown in Fig. 3-5(a). Although we have not discussed
them yet, many of the rules of ordinary algebra also hold for Boolean algebra. In
particular, AB + AC can be factored into A(B + C) using the distributive law. Fig-
ure 3-5(b) shows the circuit and truth table for A(B + C). Because two functions
are equivalent if and only if they have the same output for all possible inputs, it is
easy to see from the truth tables of Fig. 3-5 that A(B + C) is equivalent to
AB + AC. Despite this equivalence, the circuit of Fig. 3-5(b) is clearly better than
that of Fig. 3-5(a) because it contains fewer gates.

In general, a circuit designer starts with a Boolean function and then applies
the laws of Boolean algebra to it in an attempt to find a simpler but equivalent one.
From the final function, a circuit can be constructed.

To use this approach, we need some identities from Boolean algebra. Figure
3-6 shows some of the major ones. It is interesting to note that each law has two

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

24

CONSTRUCTING LOGICAL FUNCTIONS FROM NAND OR NOR

SEC. 3.1 GATES AND BOOLEAN ALGEBRA 149

In Fig. 3-1(b) two transistors are cascaded in series. If both V1 and V2 are
high, both transistors will conduct and Vout will be pulled low. If either input is
low, the corresponding transistor will turn off, and the output will be high. In other
words, Vout will be low if and only if both V1 and V2 are high.

In Fig. 3-1(c) the two transistors are wired in parallel instead of in series. In
this configuration, if either input is high, the corresponding transistor will turn on
and pull the output down to ground. If both inputs are low, the output will remain
high.

These three circuits, or their equivalents, form the three simplest gates. They
are called NOT, NAND, and NOR gates, respectively. NOT gates are often called
inverters; we will use the two terms interchangeably. If we now adopt the conven-
tion that ‘‘high’’ (Vcc volts) is a logical 1, and that ‘‘low’’ (ground) is a logical 0,
we can express the output value as a function of the input values. The symbols
used to depict these three gates are shown in Fig. 3-2(a)–(c), along with the func-
tional behavior for each circuit. In these figures, A and B are inputs and X is the
output. Each row specifies the output for a different combination of the inputs.

(b)

NAND
A

B

X

A B X

0 0 1

0 1 1

1 0 1

1 1 0

(c)

NOR
A

B

X

A B X

0 0 1

0 1 0

1 0 0

1 1 0

AND
A

B

X

(d)

A B X

0 0 0

0 1 0

1 0 0

1 1 1

OR
A

B

X

(e)

A B X

0 0 0

0 1 1

1 0 1

1 1 1

(a)

NOT

A

A X

X

0 1

1 0

Figure 3-2. The symbols and functional behavior for the five basic gates.

If the output signal of Fig. 3-1(b) is fed into an inverter circuit, we get another
circuit with precisely the inverse of the NAND gate—namely, a circuit whose output
is 1 if and only if both inputs are 1. Such a circuit is called an AND gate; its sym-
bol and functional description are given in Fig. 3-2(d). Similarly, the NOR gate can
be connected to an inverter to yield a circuit whose output is 1 if either or both in-
puts are 1 but 0 if both inputs are 0. The symbol and functional description of this
circuit, called an OR gate, are given in Fig. 3-2(e). The small circles used as part of
the symbols for the inverter, NAND gate, and NOR gate are called inversion bub-
bles. They are often used in other contexts as well to indicate an inverted signal.

The five gates of Fig. 3-2 are the principal building blocks of the digital logic
level. From the foregoing discussion, it should be clear that NAND and NOR gates
require two transistors each, whereas the AND and OR gates require three each. For

154 THE DIGITAL LOGIC LEVEL CHAP. 3

A + B

A + B

A

A

B

B

AB

AB

A

A

A

A

(a)

(b) (c)

A

B

A

B

Figure 3-4. Construction of (a) NOT, (b) AND, and (c) OR gates using only NAND

gates or only NOR gates.

gates (or perhaps with simpler gates, for example, two-input gates instead of four-
input gates). In the search for equivalent circuits, Boolean algebra can be a valu-
able tool.

As an example of how Boolean algebra can be used, consider the circuit and
truth table for AB + AC shown in Fig. 3-5(a). Although we have not discussed
them yet, many of the rules of ordinary algebra also hold for Boolean algebra. In
particular, AB + AC can be factored into A(B + C) using the distributive law. Fig-
ure 3-5(b) shows the circuit and truth table for A(B + C). Because two functions
are equivalent if and only if they have the same output for all possible inputs, it is
easy to see from the truth tables of Fig. 3-5 that A(B + C) is equivalent to
AB + AC. Despite this equivalence, the circuit of Fig. 3-5(b) is clearly better than
that of Fig. 3-5(a) because it contains fewer gates.

In general, a circuit designer starts with a Boolean function and then applies
the laws of Boolean algebra to it in an attempt to find a simpler but equivalent one.
From the final function, a circuit can be constructed.

To use this approach, we need some identities from Boolean algebra. Figure
3-6 shows some of the major ones. It is interesting to note that each law has two

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

25

THE TRANSISTOR AS AN INVERTER

148 THE DIGITAL LOGIC LEVEL CHAP. 3

3.1.1 Gates

A digital circuit is one in which only two logical values are present. Typically,
a signal between 0 and 0.5 volt represents one value (e.g., binary 0) and a signal
between 1 and 1.5 volts represents the other value (e.g., binary 1). Voltages out-
side these two ranges are not permitted. Tiny electronic devices, called gates, can
compute various functions of these two-valued signals. These gates form the hard-
ware basis on which all digital computers are built.

The details of how gates work inside is beyond the scope of this book, be-
longing to the device level, which is below our level 0. Nevertheless, we will now
digress ever so briefly to take a quick look at the basic idea, which is not difficult.
All modern digital logic ultimately rests on the fact that a transistor can be made to
operate as a very fast binary switch. In Fig. 3-1(a) we have shown a bipolar tran-
sistor (the circle) embedded in a simple circuit. This transistor has three con-
nections to the outside world: the collector, the base, and the emitter. When the
input voltage, Vin, is below a certain critical value, the transistor turns off and acts
like an infinite resistance. This causes the output of the circuit, Vout , to take on a
value close to Vcc, an externally regulated voltage, typically +1.5 volts for this type
of transistor. When Vin exceeds the critical value, the transistor switches on and
acts like a wire, causing Vout to be pulled down to ground (by convention, 0 volts).

Collector

Base

+Vcc

Vout

Vin

Emitter

(a)

Vout

+Vcc

+Vcc

Vout

V2

(b)

V1

V1

(c)

V2

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

The important thing to notice is that when Vin is low, Vout is high, and vice
versa. This circuit is thus an inverter, converting a logical 0 to a logical 1, and a
logical 1 to a logical 0. The resistor (the jagged line) is needed to limit the amount
of current drawn by the transistor so it does not burn out. The time required to
switch from one state to the other is typically a nanosecond or less.

from: W. D. Hillis: The Pattern on the Stone
A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

26

CONSTRUCTING LOGICAL FUNCTIONS FROM NAND OR NOR

148 THE DIGITAL LOGIC LEVEL CHAP. 3

3.1.1 Gates

A digital circuit is one in which only two logical values are present. Typically,
a signal between 0 and 0.5 volt represents one value (e.g., binary 0) and a signal
between 1 and 1.5 volts represents the other value (e.g., binary 1). Voltages out-
side these two ranges are not permitted. Tiny electronic devices, called gates, can
compute various functions of these two-valued signals. These gates form the hard-
ware basis on which all digital computers are built.

The details of how gates work inside is beyond the scope of this book, be-
longing to the device level, which is below our level 0. Nevertheless, we will now
digress ever so briefly to take a quick look at the basic idea, which is not difficult.
All modern digital logic ultimately rests on the fact that a transistor can be made to
operate as a very fast binary switch. In Fig. 3-1(a) we have shown a bipolar tran-
sistor (the circle) embedded in a simple circuit. This transistor has three con-
nections to the outside world: the collector, the base, and the emitter. When the
input voltage, Vin, is below a certain critical value, the transistor turns off and acts
like an infinite resistance. This causes the output of the circuit, Vout , to take on a
value close to Vcc, an externally regulated voltage, typically +1.5 volts for this type
of transistor. When Vin exceeds the critical value, the transistor switches on and
acts like a wire, causing Vout to be pulled down to ground (by convention, 0 volts).

Collector

Base

+Vcc

Vout

Vin

Emitter

(a)

Vout

+Vcc

+Vcc

Vout

V2

(b)

V1

V1

(c)

V2

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

The important thing to notice is that when Vin is low, Vout is high, and vice
versa. This circuit is thus an inverter, converting a logical 0 to a logical 1, and a
logical 1 to a logical 0. The resistor (the jagged line) is needed to limit the amount
of current drawn by the transistor so it does not burn out. The time required to
switch from one state to the other is typically a nanosecond or less.

NOT NAND NOR

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

27

COMMON TYPES OF INTEGRATED CIRCUIT PACKAGES
SEC. 3.2 BASIC DIGITAL LOGIC CIRCUITS 159

(c)(b)(a)

Figure 3-10. Common types of integrated-circuit packages, including a dual-in-
line package (a), pin grid array (b), and land grid array (c).

For our purposes, all gates are ideal in the sense that the output appears as soon
as the input is applied. In reality, chips have a finite gate delay, which includes
both the signal propagation time through the chip and the switching time. Typical
delays are 100s of picoseconds to a few nanoseconds.

It is within the current state of the art to put more than 1 billion transistors on a
single chip. Because any circuit can be built up from NAND gates, you might think
that a manufacturer could make a very general chip containing 500 million NAND

gates. Unfortunately, such a chip would need 1,500,000,002 pins. With the stan-
dard pin spacing of 1 millimeter, an LGA would have to be 38 meters on a side to
accommodate all of those pins, which might have a negative effect on sales. Clear-
ly, the only way to take advantage of the technology is to design circuits with a
high gate/pin ratio. In the following sections we will look at simple circuits that
combine a number of gates internally to provide a useful function requiring only a
limited number of external connections (pins).

3.2.2 Combinational Circuits

Many applications of digital logic require a circuit with multiple inputs and
outputs in which the outputs are uniquely determined by the current input values.
Such a circuit is called a combinational circuit. Not all circuits have this proper-
ty. For example, a circuit containing memory elements may generate outputs that
depend on the stored values as well as the input variables. A circuit implementing
a truth table, such as that of Fig. 3-3(a), is a typical example of a combinational cir-
cuit. In this section we will examine some frequently used combinational circuits.

Multiplexers

At the digital logic level, a multiplexer is a circuit with 2n data inputs, one
data output, and n control inputs that select one of the data inputs. The selected
data input is ‘‘gated’’ (i.e., sent) to the output. Figure 3-11 is a schematic diagram

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

28

BASIC DIGITAL LOGIC CIRCUITS
8-to-1 multiplexer

160 THE DIGITAL LOGIC LEVEL CHAP. 3

for an eight-input multiplexer. The three control lines, A, B, and C, encode a 3-bit
number that specifies which of the eight input lines is gated to the OR gate and
thence to the output. No matter what value is on the control lines, seven of the
AND gates will always output 0; the other one may output either 0 or 1, depending
on the value of the selected input line. Each AND gate is enabled by a different
combination of the control inputs. The multiplexer circuit is shown in Fig. 3-11.

F

D0

D1

D2

D3

D4

D5

D6

D7

A B C

A A B CB C

Figure 3-11. An eight-input multiplexer circuit.

Using the multiplexer, we can implement the majority function of Fig. 3-3(a),
as shown in Fig. 3-12(b). For each combination of A, B, and C, one of the data
input lines is selected. Each input is wired to either Vcc (logical 1) or ground (logi-
cal 0). The algorithm for wiring the inputs is simple: input Di is the same as the
value in row i of the truth table. In Fig. 3-3(a), rows 0, 1, 2, and 4 are 0, so the cor-
responding inputs are grounded; the remaining rows are 1, so they are wired to log-
ical 1. In this manner any truth table of three variables can be implemented using
the chip of Fig. 3-12(a).

We just saw how a multiplexer chip can be used to select one of several inputs
and how it can implement a truth table. Another of its many applications is as a

𝐴 𝐵 𝐶 𝑋
0 0 0 𝐷0
0 0 1 𝐷1
0 1 0 𝐷2
0 1 1 𝐷3
1 0 0 𝐷4
1 0 1 𝐷5
1 1 0 𝐷6
1 1 1 𝐷7

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition 29

BASIC DIGITAL LOGIC CIRCUITS
4-bit comparator

SEC. 3.2 BASIC DIGITAL LOGIC CIRCUITS 163

A = B

A0

B0

A1

B1

A2

B2

A3

B3

EXCLUSIVE OR gate

Figure 3-14. A simple 4-bit comparator.

3.2.3 Arithmetic Circuits

It is now time to move on from the general-purpose circuits discussed above to
combinational circuits. As a reminder, combinational circuits have outs that are
functions of their inputs, but circuits used for doing arithmetic do not have this
property. We will begin with a simple 8-bit shifter, then look at how adders are
constructed, and finally examine arithmetic logic units, which play a central role in
any computer.

Shifters

Our first arithmetic circuit is an eight-input, eight-output shifter (see
Fig. 3-15). Eight bits of input are presented on lines D0, . . . , D7. The output,
which is just the input shifted 1 bit, is available on lines S0, . . . , S7. The control
line, C, determines the direction of the shift, 0 for left and 1 for right. On a left
shift, a 0 is inserted into bit 7. Similarly, on a right shift, a 1 is inserted into bit 0.

To see how the circuit works, notice the pairs of AND gates for all the bits ex-
cept the gates on the end. When C = 1, the right member of each pair is turned on,
passing the corresponding input bit to output. Because the right AND gate is wired
to the input of the OR gate to its right, a right shift is performed. When C = 0, it is
the left member of the AND gate pair that turns on, doing a left shift.

XOR

𝐴 𝐵 𝑋
0 0 0
0 1 1
1 0 1
1 1 0

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

30

BASIC DIGITAL LOGIC CIRCUITS
Left/right shifter: control bit 𝐶 determines shifting direction

If 𝐶 = 0 then 𝐷0𝐷1𝐷2𝐷3𝐷4𝐷5𝐷6𝐷7 → 𝐷1𝐷2𝐷3𝐷4𝐷5𝐷6𝐷7 0
If 𝐶 = 1 then 𝐷0𝐷1𝐷2𝐷3𝐷4𝐷5𝐷6𝐷7 → 0𝐷0𝐷1𝐷2𝐷3𝐷4𝐷5𝐷6164 THE DIGITAL LOGIC LEVEL CHAP. 3

C

D0 D1 D2 D3 D4 D5 D6 D7

S0 S1 S2 S3 S4 S5 S6 S7

Figure 3-15. A 1-bit left/right shifter.

Adders

A computer that cannot add integers is almost unthinkable. Consequently, a
hardware circuit for performing addition is an essential part of every CPU. The
truth table for addition of 1-bit integers is shown in Fig. 3-16(a). Two outputs are
present: the sum of the inputs, A and B, and the carry to the next (leftward) posi-
tion. A circuit for computing both the sum bit and the carry bit is illustrated in
Fig. 3-16(b). This simple circuit is generally known as a half adder.

A
A

B

B Sum

Sum

Carry

Carry

Exclusive OR gate

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Figure 3-16. (a) Truth table for 1-bit addition. (b) A circuit for a half adder.

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

31

BASIC DIGITAL LOGIC CIRCUITS
The half adder

164 THE DIGITAL LOGIC LEVEL CHAP. 3

C

D0 D1 D2 D3 D4 D5 D6 D7

S0 S1 S2 S3 S4 S5 S6 S7

Figure 3-15. A 1-bit left/right shifter.

Adders

A computer that cannot add integers is almost unthinkable. Consequently, a
hardware circuit for performing addition is an essential part of every CPU. The
truth table for addition of 1-bit integers is shown in Fig. 3-16(a). Two outputs are
present: the sum of the inputs, A and B, and the carry to the next (leftward) posi-
tion. A circuit for computing both the sum bit and the carry bit is illustrated in
Fig. 3-16(b). This simple circuit is generally known as a half adder.

A
A

B

B Sum

Sum

Carry

Carry

Exclusive OR gate

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Figure 3-16. (a) Truth table for 1-bit addition. (b) A circuit for a half adder.

𝐴 𝐵 𝑋 Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

32

BASIC DIGITAL LOGIC CIRCUITS
The full adder

SEC. 3.2 BASIC DIGITAL LOGIC CIRCUITS 165

Although a half adder is adequate for summing the low-order bits of two multi-
bit input words, it will not do for a bit position in the middle of the word because it
does not handle the carry into the position from the right. Instead, the full adder
of Fig. 3-17 is needed. From inspection of the circuit it should be clear that a full
adder is built up from two half adders. The Sum output line is 1 if an odd number
of A, B, and the Carry in are 1. The Carry out is 1 if either A and B are both 1 (left
input to the OR gate) or exactly one of them is 1 and the Carry in bit is also 1. To-
gether the two half adders generate both the sum and the carry bits.

B
A

B

Carry
in Sum

Sum
Carry
out

0 0 0 0

0 1 1 0

1 0 1 0

1

A

0

0

0

0 1 0 1

0 0 1 0

0 1 0 1

1 0 0 1

1

1

1

1

1 1 1 1

Carry in

Carry out

(a) (b)

Figure 3-17. (a) Truth table for full adder. (b) Circuit for a full adder.

To build an adder for, say, two 16-bit words, one just replicates the circuit of
Fig. 3-17(b) 16 times. The carry out of a bit is used as the carry into its left neigh-
bor. The carry into the rightmost bit is wired to 0. This type of adder is called a
ripple carry adder, because in the worst case, adding 1 to 111...111 (binary), the
addition cannot complete until the carry has rippled all the way from the rightmost
bit to the leftmost bit. Adders that do not have this delay, and hence are faster, also
exist and are usually preferred.

As a simple example of a faster adder, consider breaking up a 32-bit adder into
a 16-bit lower half and a 16-bit upper half. When the addition starts, the upper
adder cannot yet get to work because it will not know the carry into it for 16 addi-
tion times.

However, consider this modification to the circuit. Instead of having a single
upper half, give the adder two upper halves in parallel by duplicating the upper

𝐴 𝐵 Carry 𝑋 Carry

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition 33

BASIC DIGITAL LOGIC CIRCUITS
1-bit arithmetic logic unit (ALU)SEC. 3.2 BASIC DIGITAL LOGIC CIRCUITS 167

A
INVA

ENA
B

Logical unit Carry in

AB

B

Enable
lines

F0

F1

Decoder

Output

Sum

Carry out

Full
adder

A + B

ENB

Figure 3-18. A 1-bit ALU.

Carry
in

Carry
out

1-bit
ALU

F0F1

A7 B7

O7

1-bit
ALU

A6 B6

O6

1-bit
ALU

A5 B5

O5

1-bit
ALU

A4 B4

O4

1-bit
ALU

A3 B3

O3

1-bit
ALU

A2 B2

O2

1-bit
ALU

A1 B1

O1

1-bit
ALU INC

A0 B0

O0

Figure 3-19. Eight 1-bit ALU slices connected to make an 8-bit ALU. The en-
ables and invert signals are not shown for simplicity.

Years ago, a bit slice was an actual chip you could buy. Nowadays, a bit slice is
more likely to be a library a chip designer can replicate the desired number of
times in a computer-aided-design program that produces an output file that drives
the chip-production machines. But the idea is essentially the same.

F0F1

F0F1

F0F1

F0F1

F
0
F

1

F0F1

F0F1

F0F1

A B

𝐹0 𝐹1 Function

0 0 AND(𝐴, 𝐵)
0 1 OR(𝐴, 𝐵)
1 0 NOT(𝐵)
1 1 ADD(𝐴, 𝐵)

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition 34

BASIC DIGITAL LOGIC CIRCUITS
Eight 1-bit ALUs can be connected to form an 8-bit ALU

SEC. 3.2 BASIC DIGITAL LOGIC CIRCUITS 167

A
INVA

ENA
B

Logical unit Carry in

AB

B

Enable
lines

F0

F1

Decoder

Output

Sum

Carry out

Full
adder

A + B

ENB

Figure 3-18. A 1-bit ALU.

Carry
in

Carry
out

1-bit
ALU

F0F1

A7 B7

O7

1-bit
ALU

A6 B6

O6

1-bit
ALU

A5 B5

O5

1-bit
ALU

A4 B4

O4

1-bit
ALU

A3 B3

O3

1-bit
ALU

A2 B2

O2

1-bit
ALU

A1 B1

O1

1-bit
ALU INC

A0 B0

O0

Figure 3-19. Eight 1-bit ALU slices connected to make an 8-bit ALU. The en-
ables and invert signals are not shown for simplicity.

Years ago, a bit slice was an actual chip you could buy. Nowadays, a bit slice is
more likely to be a library a chip designer can replicate the desired number of
times in a computer-aided-design program that produces an output file that drives
the chip-production machines. But the idea is essentially the same.

F0F1

F0F1

F0F1

F0F1

F
0
F

1

F0F1

F0F1

F0F1

A B

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

35

BASIC DIGITAL LOGIC CIRCUITS
The data path of a typical von Neumann machine

SEC. 2.1 PROCESSORS 57

some computation. The data path is important in all machines and we will discuss
it at great length throughout this book.

A + B

A + B

A

A

B

B

Registers

ALU input register

ALU output register

ALU

ALU input bus

Figure 2-2. The data path of a typical von Neumann machine.

The ALU itself performs addition, subtraction, and other simple operations on
its inputs, thus yielding a result in the output register. This output register can be
stored back into a register. Later on, the register can be written (i.e., stored) into
memory, if desired. Not all designs have the A, B, and output registers. In the ex-
ample, addition is illustrated, but ALUs can also perform other operations.

Most instructions can be divided into one of two categories: register-memory
or register-register. Register-memory instructions allow memory words to be
fetched into registers, where, for example, they can be used as ALU inputs in sub-
sequent instructions. (‘‘Words’’ are the units of data moved between memory and
registers. A word might be an integer. We will discuss memory organization later
in this chapter.) Other register-memory instructions allow registers to be stored
back into memory.

The other kind of instruction is register-register. A typical register-register in-
struction fetches two operands from the registers, brings them to the ALU input
registers, performs some operation on them (such as addition or Boolean AND),

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

36

THE DECIMAL NUMBER SYSTEM
A decimal number has the following form:

100’s 10’s 1’s 0.1’s 0.01’s 0.001’s
place place place place place place

↓ ↓ ↓ ↓ ↓ ↓
𝑑𝑛 ⋯ 𝑑2 𝑑1 𝑑0 . 𝑑−1 𝑑−2 𝑑−3 ⋯ 𝑑−𝑘

In compact notation

𝑛
∑
𝑖=−𝑘

𝑑𝑖 × 10𝑖, 𝑑𝑖 ∈ {0, 1, 2, … , 9}

For a general base 𝑏
𝑛
∑
𝑖=−𝑘

𝑑𝑖 × 𝑏𝑖, 𝑑𝑖 ∈ {0, 1, 2, … , 𝑏 − 1}

37

RADIX NUMBER SYSTEMS
The decimal number 2001 represented as binary, octal, and
hexadecimal number

Binary
1 1 1 1 1 0 1 0 0 0 1

1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20
1024 +512 +256 +128 +64 +0 +16 +0 +0 +0 +1

Octal
3 7 2 1

3 × 83 + 7 × 82 + 2 × 81 + 1 × 80
1536 +448 +16 +1

Decimal
2 0 0 1

2 × 103 + 0 × 102 + 0 × 101 + 1 × 100
2000 +0 +0 +1

Hexadecimal
7 D 1

7 × 162 +13 × 161 +1 × 160
1792 +208 +1

38

CONVERSION BETWEEN NUMBER SYSTEMS

Decimal Binary Octal Hex

0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D

Decimal Binary Octal Hex

14 1110 16 E
15 1111 17 F
16 10000 20 10
20 10100 24 14
30 11110 36 1E
40 101000 50 28
50 110010 62 32
60 111100 74 3C
70 1000110 106 46
80 1010000 120 50
90 1011010 132 5A
100 1100100 144 64
1000 1111101000 1750 3E8
2989 101110101101 5655 BAD

39

CONVERSION BETWEEN NUMBER SYSTEMS
674 BINARY NUMBERS APP. A

octal-to-binary except that each hexadecimal digit corresponds to a group of 4 bits
instead of 3 bits. Figure A-4 gives some examples of conversions.

Example 1

Hexadecimal

Binary

Octal

Hexadecimal

Binary

Octal

Example 2

1

1

9 4

4

4

8 B

B

6

1

4

4

5

5

0

0

7

7 7

AB C

5 5

56

4

3

3

0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0

0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0

.

.

.

.

.

.

Figure A-4. Examples of octal-to-binary and hexadecimal-to-binary conversion.

Conversion of decimal numbers to binary can be done in two different ways.
The first method follows directly from the definition of binary numbers. The
largest power of 2 smaller than the number is subtracted from the number. The
process is then repeated on the difference. Once the number has been decomposed
into powers of 2, the binary number can be assembled with 1s in the bit positions
corresponding to powers of 2 used in the decomposition, and 0s elsewhere.

The other method (for integers only) consists of dividing the number by 2.
The quotient is written directly beneath the original number and the remainder, 0
or 1, is written next to the quotient. The quotient is then considered and the proc-
ess repeated until the number 0 has been reached. The result of this process will be
two columns of numbers, the quotients and the remainders. The binary number
can now be read directly from the remainder column starting at the bottom. Figure
A-5 gives an example of decimal-to-binary conversion.

Binary integers can also be converted to decimal in two ways. One method
consists of summing up the powers of 2 corresponding to the 1 bits in the number.
For example,

10110 = 24 + 22 + 21 = 16 + 4 + 2 = 22

In the other method, the binary number is written vertically, one bit per line, with
the leftmost bit on the bottom. The bottom line is called line 1, the one above it
line 2, and so on. The decimal number will be built up in a parallel column next to
the binary number. Begin by writing a 1 on line 1. The entry on line n consists of
two times the entry on line n − 1 plus the bit on line n (either 0 or 1). The entry on
the top line is the answer. Figure A-6 gives an example of this method of binary to
decimal conversion.

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

40

BINARY NUMBERS
Conversion of decimal numbers to binary numbers by successive
halving

SEC. A.3 CONVERSION FROM ONE RADIX TO ANOTHER 675

Quotients Remainders

1 4 9 2

7 4 6

3 7 3

1 8 6

9 3

4 6

2 3

1 1

5

2

1

0

1

0

0

0

1

1

1

1

1

0

0

1 0 1 1 1 0 1 0 1 0 0 = 149210

Figure A-5. Conversion of the decimal number 1492 to binary by successive
halving, starting at the top and working downward. For example, 93 divided by 2
yields a quotient of 46 and a remainder of 1, written on the line below it.

Decimal-to-octal and decimal-to-hexadecimal conversion can be accomplished
either by first converting to binary and then to the desired system or by subtracting
powers of 8 or 16.

A.4 NEGATIVE BINARY NUMBERS

Four different systems for representing negative numbers have been used in
digital computers at one time or another in history. The first one is called signed
magnitude. In this system the leftmost bit is the sign bit (0 is + and 1 is −) and the
remaining bits hold the absolute magnitude of the number.

The second system, called one’s complement, also has a sign bit with 0 used
for plus and 1 for minus. To negate a number, replace each 1 by a 0 and each 0 by
a 1. This holds for the sign bit as well. One’s complement is obsolete.

The third system, called two’s complement, also has a sign bit that is 0 for
plus and 1 for minus. Negating a number is a two-step process. First, each 1 is re-
placed by a 0 and each 0 by a 1, just as in one’s complement. Second, 1 is added

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

41

BINARY NUMBERS
Conversion of binary numbers to decimal numbers by successive
doubling676 BINARY NUMBERS APP. A

1 + 2 × 1499 = 2999

01 1 1 1 0 1 1 0 1 1 1

Result

1 + 2 × 749 = 1499

1 + 2 × 374 = 749

0 + 2 × 187 = 374

1 + 2 × 93 = 187

1 + 2 × 46 = 93

0 + 2 × 23 = 46

1 + 2 × 11 = 23

1 + 2 × 5 = 11

1 + 2 × 2 = 5

0 + 2 × 1 = 2

1 + 2 × 0 = 1 Start here

Figure A-6. Conversion of the binary number 101110110111 to decimal by suc-
cessive doubling, starting at the bottom. Each line is formed by doubling the one
below it and adding the corresponding bit. For example, 749 is twice 374 plus
the 1 bit on the same line as 749.

to the result. Binary addition is the same as decimal addition except that a carry is
generated if the sum is greater than 1 rather than greater than 9. For example, con-
verting 6 to two’s complement is done in two steps:

00000110 (+6)
11111001 (−6 in one’s complement)
11111010 (−6 in two’s complement)

If a carry occurs from the leftmost bit, it is thrown away.
The fourth system, which for m-bit numbers is called excess 2m − 1, represents a

number by storing it as the sum of itself and 2m − 1. For example, for 8-bit numbers,
m = 8, the system is called excess 128 and a number is stored as its true value plus
128. Therefore, −3 becomes −3 + 128 = 125, and −3 is represented by the 8-bit bi-
nary number for 125 (01111101). The numbers from −128 to +127 map onto 0 to
255, all of which are expressible as an 8-bit positive integer. Interestingly enough,
this system is identical to two’s complement with the sign bit reversed. Figure A-7
gives examples of negative numbers in all four systems.

Both signed magnitude and one’s complement have two representations for
zero: a plus zero, and a minus zero. This situation is undesirable. The two’s com-
plement system does not have this problem because the two’s complement of plus
zero is also plus zero. The two’s complement system does, however, have a dif-

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

42

BINARY NUMBERS
Binary arithmetic addition (compare with half adder)

Addend 0 0 1 1
Augend +0 +1 +0 +1

Sum 0 1 1 0
Carry 0 0 0 1

𝐴 𝐵 𝑋 Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Example: adding two 8-bit binary numbers

Carry 1 1 1 1 1 1

(87)10 0 1 0 1 0 1 1 1
(183)10 + 1 0 1 1 0 1 1 1
(270)10 1 0 0 0 0 1 1 1 0

43

BINARY NUMBERS

To represent negative binary numbers, one bit (the sign bit)
indicates the sign: 0/1 ↔ +/−
Negative binary numbers can be represented in multiple ways

signed magnitude: leftmost bit is the sign bit
one’s complement: complement of the magnitude of the number, i.e.

the sum of an 𝑛-bit number and its one’s complement
is 2𝑛 − 1 (→wikipedia); numbers range from ±(2𝑛−1 − 1).

two’s complement: one’s complement plus one, i.e. the sum of an
𝑛-bit number and its two’s complement is 2𝑛
(→wikipedia); numbers range from −2𝑛−1 to 2𝑛−1 − 1.

excess 2𝑚−1: sum of itself and 2𝑚−1, for 𝑚 = 8 the system is called
excess 128

44

https://en.wikipedia.org/wiki/One's_complement
https://en.wikipedia.org/wiki/Two's_complement

NEGATIVE BINARY NUMBERS

(𝑁)10 (𝑁)2 −(𝑁)2 −(𝑁)2 −(𝑁)2 −(𝑁)2
signed mag. 1’s compl. 2’s compl. excess 128

1 0000 0001 1000 0001 1111 1110 1111 1111 0111 1111
2 0000 0010 1000 0010 1111 1101 1111 1110 0111 1110
3 0000 0011 1000 0011 1111 1100 1111 1101 0111 1101
4 0000 0100 1000 0100 1111 1011 1111 1100 0111 1100
5 0000 0101 1000 0101 1111 1010 1111 1011 0111 1011
6 0000 0110 1000 0110 1111 1001 1111 1010 0111 1010
7 0000 0111 1000 0111 1111 1000 1111 1001 0111 1001
8 0000 1000 1000 1000 1111 0111 1111 1000 0111 1000
9 0000 1001 1000 1001 1111 0110 1111 0111 0111 0111
10 0000 1010 1000 1010 1111 0101 1111 0110 0111 0110
20 0001 0100 1001 0100 1110 1011 1110 1100 0110 1100
30 0001 1110 1001 1110 1110 0001 1110 0010 0110 0010
40 0010 1000 1010 1000 1101 0111 1101 1000 0101 1000
50 0011 0010 1011 0010 1100 1101 1100 1110 0100 1110
127 0111 1111 1111 1111 1000 0000 1000 0001 0000 0001
128 nonexistent nonexistent nonexistent 1000 0000 0000 0000

45

BINARY NUMBERS

Subtraction of binary numbers

(𝑁)10 (𝑁)2 (𝑁)2
1’s compl. 2’s compl.

10 0000 1010 0000 1010
+ (−3) 1111 1100 1111 1101

7 1 0000 0110 �A1 0000 0111
↑

carry 1 ↑
discarded

0000 0111

46

FLOATING POINT NUMBERS

A real value 𝑥 can be represented using scientific notation (base 10)

𝑥 = (−1)𝑠 × 𝑓 × 10𝑒

where 𝑠: sign, 𝑓 : fraction or mantissa, 𝑒: exponent
Range vs. precision:

∙ the range is determined by the number of digits in the
exponent 𝑒

∙ the precision is determined by the number of digits in the
fraction 𝑓

Underflow/overflow occurs, if the magnitude of 𝑥 is too small/large
to be represented with the given range and precision

47

FLOATING POINT NUMBERS
Double precision: 64-bit representation of a real value

(−1)sign(1.𝑏51𝑏50…𝑏0)2 × 2𝑒−1023 = (−1)sign(1 +
52
∑
𝑖=1
𝑏52−𝑖 2−𝑖) × 2𝑒−1023

Single precision: 32-bit representation of a real value

from: wikipedia and wikipedia

48

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

FLOATING POINT NUMBERS

The IEEE floating-point format
SEC. B.2 IEEE FLOATING-POINT STANDARD 754 687

Item Single precision Double precision

Bits in sign 1 1

Bits in exponent 8 11

Bits in fraction 23 52

Bits, total 32 64

Exponent system Excess 127 Excess 1023

Exponent range −126 to +127 −1022 to +1023

Smallest normalized number 2−126 2−1022

Largest normalized number approx. 2128 approx. 21024

Decimal range approx. 10−38 to 1038 approx. 10−308 to 10308

Smallest denormalized number approx. 10−45 approx. 10−324

Figure B-5. Characteristics of IEEE floating-point numbers.

Normalized

Denormalized

Zero

Sign bit

Infinity

Not a number

Any bit pattern

Any nonzero bit pattern

Any nonzero bit pattern

0

0

0

0 < Exp < Max

1 1 1…1 0

1 1 1…1

±

±

±

±

±

Figure B-6. IEEE numerical types.

really satisfactory, so IEEE invented denormalized numbers. These numbers
have an exponent of 0 and a fraction given by the following 23 or 52 bits. The
implicit 1 bit to the left of the binary point now becomes a 0. Denormalized num-
bers can be distinguished from normalized ones because the latter are not permit-
ted to have an exponent of 0.

The smallest normalized single precision number has a 1 as exponent and 0 as
fraction, and represents 1. 0 × 2−126. The largest denormalized number has a 0 as
exponent and all 1s in the fraction, and represents about 0. 9999999 × 2−126, which
is almost the same thing. One thing to note however, is that this number has only
23 bits of significance, versus 24 for all normalized numbers.

As calculations further decrease this result, the exponent stays put at 0, but the
first few bits of the fraction become zeros, reducing both the value and the number
of significant bits in the fraction. The smallest nonzero denormalized number con-
sists of a 1 in the rightmost bit, with the rest being 0. The exponent represents

from: A. S. Tannenbaum & T. Austin: Structured Computer Organization, 6th edition

49

FLOATING POINT NUMBERS

Overflow level (OFL): largest positive floating point number

OFL = (1 − 2−(𝑝+1)) × 2(𝑒max+1) ≈ 2(𝑒max+1)

Underflow level (UFL): smallest positive floating point number

UFL = 2𝑒min

where 𝑒max/𝑒min is the largest/smallest exponent, 𝑝 is the number of
bits in the fraction

if |𝑥| < UFL, then 𝑥 = 0.0
if |𝑥| > OFL, then 𝑥 = inf

50

