
Programming I
Michael Habeck

michael.habeck@uni-jena.de
Microscopic Image Analysis, University Hospital Jena

November 18, 2020

1 Image processing I - Programming I
In this lecture, we will learn the fundamentals of Python and start to look into writing our own
functions.

Much of the material is inspired by J. VanderPlas: Whirlwind Tour of Python

1.1 Outline
• Recap of what we learned about Python so far (basic data types and operations)
• More on lists and other compound types, indexing and slicing
• User-defined functions
• Loops and control structures

1.2 Built-in data types
Python is a dynamic language and therefore doesn’t require variable declarations specifying a
variable’s type (as, e.g., in C/C++). Simple scalar data types in Python are:

1.2.1 Scalar data types

Type Example Description
int x = 1 integers (i.e., whole numbers)
float x = 1.0 floating-point numbers (i.e., real numbers)
complex x = 1 + 2j Complex numbers (i.e., numbers with real and imaginary

part)
bool x = True Boolean: True/False values
str x = 'abc' String: characters or text
NoneType x = None Special object indicating nulls

1.2.2 Compound data types

Python also has several built-in compound types that act as containers for other types. These
compound types are:

1

https://github.com/jakevdp/WhirlwindTourOfPython

Type Name Example Description
list [1, 2, 3] Ordered collection
tuple (1, 2, 3) Immutable ordered collection
dict {'a':1, 'b':2, 'c':3} Unordered (key,value) mapping
set {1, 2, 3} Unordered collection of unique values

The following code produces examples for some of the built-in types provided by Python. Because
Python is interpreted you can define these variables right on the spot:

[1]: a = 1
b = 0.123456789
c = True
d = 'abcdefg'
e = [0, 'a', False, 0, 1.1]
f = (0, 'a', False, 0, 1.1)
g = set([0, 'a', False, 0, 1.1])
h = {None: [2,3], (1,2): 'xyz', 'image': 'processing'}
i = None

print('value of variable "a":', a)
print('value of variable "b":', b)
print('value of variable "c":', c)
print('value of variable "d":', d)
print('value of variable "e":', e)
print('value of variable "f":', f)
print('value of variable "g":', g)
print('value of variable "h":', h)
print('value of variable "i":', i)

value of variable "a": 1
value of variable "b": 0.123456789
value of variable "c": True
value of variable "d": abcdefg
value of variable "e": [0, 'a', False, 0, 1.1]
value of variable "f": (0, 'a', False, 0, 1.1)
value of variable "g": {0, 1.1, 'a'}
value of variable "h": {None: [2, 3], (1, 2): 'xyz', 'image': 'processing'}
value of variable "i": None

What is the type of each of these variables? Let’s use Python to find out:

[2]: print('type of variable "a":', type(a), a)
print('type of variable "b":', type(b), b)
print('type of variable "c":', type(c), c)
print('type of variable "d":', type(d), d)
print('type of variable "e":', type(e), e)
print('type of variable "f":', type(f), f)

2

print('type of variable "g":', type(g), g)
print('type of variable "h":', type(h), h)
print('type of variable "i":', type(i), i)

type of variable "a": <class 'int'> 1
type of variable "b": <class 'float'> 0.123456789
type of variable "c": <class 'bool'> True
type of variable "d": <class 'str'> abcdefg
type of variable "e": <class 'list'> [0, 'a', False, 0, 1.1]
type of variable "f": <class 'tuple'> (0, 'a', False, 0, 1.1)
type of variable "g": <class 'set'> {0, 1.1, 'a'}
type of variable "h": <class 'dict'> {None: [2, 3], (1, 2): 'xyz', 'image':
'processing'}
type of variable "i": <class 'NoneType'> None

Python integers don’t overflow

[3]: a = 2**200

print(a)

1606938044258990275541962092341162602522202993782792835301376

Floats are double precision floating point numbers. So they have a finite range:

[4]: # floats

import sys

inf = float('inf')
print(1/inf)
floatmax = sys.float_info.max
floatmin = sys.float_info.min
print('largest float:', floatmax)
print('smallest float:', floatmin)
print('overflow:', floatmax * (1 + 2**(-52)))
apparently, underflow occurs at numbers that are even smaller
than floatmin
print('underflow:', 2**-1022, 2**-1074, 2**-1075)

0.0
largest float: 1.7976931348623157e+308
smallest float: 2.2250738585072014e-308
overflow: inf
underflow: 2.2250738585072014e-308 5e-324 0.0

1.2.3 Useful Built-In Functions

3

Type Name Example Description
print print('Hello, world!') Write to standard output
type type(1) Returns the type of an object
len len('abc') Size of object
dir dir(math) Content of module or object
str str(10) Convert object to string
int int('123') Convert string to integer
range range(1, 12) Creates a list

[5]: # example code illustrating some built-in functions
import math
print(dir(math))
print(math.pi)
x = int('123')
print(type(x))

['__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__',
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',
'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs',
'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf',
'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10',
'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'remainder', 'sin',
'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']
3.141592653589793
<class 'int'>

1.3 Basic operations
1.3.1 Arithmetic operations

Python implements seven basic binary arithmetic operators, two of which can double as unary
operators. They are summarized in the following table:

Operator Name Description
a + b Addition Sum of a and b
a - b Subtraction Difference of a and b
a * b Multiplication Product of a and b
a / b True division Quotient of a and b
a // b Floor division Quotient of a and b, removing fractional parts
a % b Modulus Integer remainder after division of a by b
a ** b Exponentiation a raised to the power of b
-a Negation The negative of a
+a Unary plus a unchanged (rarely used)

These operators can be used and combined in intuitive ways, using standard parentheses to group
operations. Numbers behave in the expected fashion under addition +, subtraction -, multiplication

4

* and division:

[6]: # adding, subtracting, multiplying, dividing ints, floats and complex numbers

a, b, c = 123, 45678., 9+1.234j

print(a + b)
print(b - c)
print(a * c)
print(a / b)

45801.0
(45669-1.234j)
(1107+151.782j)
0.0026927623801392356

The operator // is the floor division:

[7]: # division of two ints can yield a float
floor division of two ints yields an int
print(10 / 7)
print(10 // 7)
print(10 % 7)
print(10 - 7 * (10//7))
print(10**3)

floor division of two floats yields a float
print(10 / 7.)
print(10 // 7.)

1.4285714285714286
1
3
3
1000
1.4285714285714286
1.0

1.3.2 Comparison Operations

Another type of operation which can be very useful is comparison of different values. For this,
Python implements standard comparison operators, which return Boolean values True and False.
The comparison operations are listed in the following table:

Operation Description
a == b a equal to b
a != b a not equal to b
a < b a less than b
a > b a greater than b

5

Operation Description
a <= b a less than or equal to b
a >= b a greater than or equal to b

[8]: print('ab' == 'ab')
print(1 == 1+1)
print(2 != 1+1)
print(6-1 <= 5)
print('a' < 'b')
print('a' > 'b')

True
False
False
True
True
False

1.3.3 Logical operations

Python provides operators to combine Boolean values using the keywords and, or, and not:

Operation Name Example
a and b AND (x < 6) and (x > 2) is true for x = 4
a or b OR (x > 10) or (x % 2 == 0) is also true
not a NOT not (x < 6) is false

There is no special XOR operator, but a simple version of XOR is to use the operator =! as in ~~~
python (x > 1) != (x < 10) ~~~

[9]: A = True
B = 10 < 7
print(A and B)
print(A or B)
print(not B)

False
True
True

1.3.4 Identity and Membership Operators

Like and, or, and not, Python also contains prose-like operators to check for identity and mem-
bership. They are the following:

6

Operator Description
a is b True if a and b are identical objects
a is not b True if a and b are not identical objects
a in b True if a is a member of b
a not in b True if a is not a member of b

[10]: a = 10
b = a
print(a is b)
b = 10
print(a is b)
a = [1, 2]
print(0 in a)

True
True
False

1.3.5 Bitwise operations

In addition to the standard numerical operations, Python includes operators to perform bitwise
logical operations on integers. These are much less commonly used than the standard arithmetic
operations, but it’s useful to know that they exist. The six bitwise operators are summarized in
the following table:

Operator Name Description
a & b Bitwise AND Bits defined in both a and b
a | b Bitwise OR Bits defined in a or b or both
a ^ b Bitwise XOR Bits defined in a or b but not both
a << b Bit shift left Shift bits of a left by b units
a >> b Bit shift right Shift bits of a right by b units
~a Bitwise NOT Bitwise negation of a

[11]: # (14)_10 : 01110
(22)_10 : 10110
===============
AND : 00110 -> (6)_10
OR : 11110 -> (30)_10
XOR : 11000 -> (24)_10
print('AND:', 14 & 22)
print(' OR:', 14 | 22)
print('XOR:', 14 ^ 22)

print('\nLeft/right shift')
print(5<<1) # (5)_10 -> (10)_10 since 101 -> 1010

7

print(5>>2) # (5)_10 -> (2)_10 since 101 -> 10

print('\nBitwise NOT')
print(~5) # (5)_10 = 0101 -> 1010 (6)_10
print(~-6) # inversion
print(~~5)
print(~7) # (7)_10 = 0111 -> 1000 (8)_10
print(~-8) # inversion

AND: 6
OR: 30
XOR: 24

Left/right shift
10
1

Bitwise NOT
-6
5
5
-8
7

1.4 Lists, tuples, sets

[12]: # various ways of creating lists

a = [1, 3, 'a', 'bc']
b = list(range(3, 5, 2))
c = list('abcdef')
d = [x**2 for x in range(5)]

print(a)
print(b)
print(c)
print(d)

[1, 3, 'a', 'bc']
[3]
['a', 'b', 'c', 'd', 'e', 'f']
[0, 1, 4, 9, 16]

[13]: # a list of lists
x = [[1,2,3],[4,5,6],[7,8,9], 'A']
print(x)
print(x[1])

8

[[1, 2, 3], [4, 5, 6], [7, 8, 9], 'A']
[4, 5, 6]

1.4.1 Indexing and slicing

Python provides access to elements in compound types through indexing for single elements, and
slicing for multiple elements. Python uses zero-based indexing, so we can access the first and
second element in a list l using the following syntax l[0] and l[1]. Elements at the end of the
list can be accessed with negative numbers starting from -1: l[-1] and l[-2] return the last and
the second last element of l:

[14]: l = [2, 3, 5, 7, 11]
print('list: ', l)
print('1st element:', l[0])
print('2nd element:', l[1])
print('last element:', l[-1], l[len(l)-1]) # see MATLAB a(end)
print('2nd last element:', l[-2])

list: [2, 3, 5, 7, 11]
1st element: 2
2nd element: 3
last element: 11 11
2nd last element: 7

This figure illustrates indexing for this particular example (source: J. VanderPlas: Whirlwind Tour
of Python)

Slicing can be used to access sublists. Slices have the following structure l[start:stop:step]
where start, stop, and step can be integers or None. start specifies where the slice starts, stop
where it ends; step is an increment that allows us to skip elements in the slice.

[15]: # accessing sublists in l
print(l)

every second element in list 'l' start with the first one
print(l[:-1:2])

9

https://github.com/jakevdp/WhirlwindTourOfPython
https://github.com/jakevdp/WhirlwindTourOfPython

every second element in list 'l' start with the 2nd one
print(l[1::2])

reversed list
print(l[::-1])

[2, 3, 5, 7, 11]
[2, 5]
[3, 7]
[11, 7, 5, 3, 2]

1.4.2 Mutable versus immutable containers

Lists are mutable, i.e. their content can be changed:

[16]: a = [1, 3, 'a', 'b']
b = list(range(5))
c = list('abcdef')
d = [x**2 for x in range(5)]

print('before')
print(a)
print(b)
print(c)
print(d)

a[0] = 10
b.append(10)
c.extend(d)
#c = c + d

print('\nafter')
print(a)
print(b)
print(c)

before
[1, 3, 'a', 'b']
[0, 1, 2, 3, 4]
['a', 'b', 'c', 'd', 'e', 'f']
[0, 1, 4, 9, 16]

after
[10, 3, 'a', 'b']
[0, 1, 2, 3, 4, 10]
['a', 'b', 'c', 'd', 'e', 'f', 0, 1, 4, 9, 16]

10

[17]: # list methods
print(dir(a))

b.insert(2, 23452435)
print(b)

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__',
'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__',
'__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__',
'__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index',
'insert', 'pop', 'remove', 'reverse', 'sort']
[0, 1, 23452435, 2, 3, 4, 10]

Tuples are immutable, meaning their content cannot be changed:

[18]: # tuples

a = (1, 2, 3)
b = 1, 2, 3
c = tuple('abc')

print(a, type(a))
print(b, type(b))
print(c, type(c))

print(a + b + c)

(1, 2, 3) <class 'tuple'>
(1, 2, 3) <class 'tuple'>
('a', 'b', 'c') <class 'tuple'>
(1, 2, 3, 1, 2, 3, 'a', 'b', 'c')

[19]: a = (1, 2, 3)
a[0] = 'a'

TypeError Traceback (most recent call last)
<ipython-input-19-fa208dcb9091> in <module>

1 a = (1, 2, 3)
----> 2 a[0] = 'a'

TypeError: 'tuple' object does not support item assignment

11

[20]: a = list(a)
a[0] = 'a'
print(a)

['a', 2, 3]

1.5 User-defined functions
Functions allow you to package reusable pieces of code and use the functionality over and over again
without reproducing the code. This helps us to develop compact, bug-free and reusable code. The
Python keyword def marks the definition of a function. This keyword is followed by the function
name and input variables that are listed inside round brackets (this list can also be empty); a colon
marks the end of the function header:

def function_name(variables1, variable2, ...):
"""
Optional doc string
"""
pass

The preferred convention for function names is to use snake_case, i.e. lower case words separated
by an underscore. (See the PEP8 guidelines for Python programming for more details on how to
write good Python code.)

Right below the first line, we can place an optional documentation string (doc string) followed
by the main function code, both indented to the right by a tab. It is not mandatory, but good
programming practice to briefly describe what the function does, what input it expects and what
the output will be.

def function_name(variables1, variable2, ...):
"""
Optional doc string
"""
main body of the function: set of operations to be performed
by the function
return result

Here the main body of the code is commented out (remember that # marks a comment which
extends until the end of the line). The keyword return is used to return the function’s output (if
not implemented the function returns None). Useful functions can be packaged in a module whose
filename should end with the .py extension.

The following function computes the surface area and volume of a cylinder:

[21]: def cylinder(radius, height):
"""
Computes the surface and volume of a cylinder
"""
from math import pi

surface = 2 * pi * radius * height

12

https://en.wikipedia.org/wiki/Snake_case
https://www.python.org/dev/peps/pep-0008/

volume = pi * radius**2 * height

return surface, volume

Some comments:

• we need to fetch the value of π from the built-in module math
• the exponentiation operator is double asteriks ** so 3**4 is 81 (see section “Arithmetic

operations”)
• the function returns a tuple of two values

We can call this function with some inputs and store the output as follows:

[22]: result = cylinder(1, 2)
print(result)

(12.566370614359172, 6.283185307179586)

If we know that the function returns a tuple of two values, we can also directly assign them to
specific variables (of course the variable names can be different from the ones used internally in the
implementation of cylinder):

[23]: surf, vol = cylinder(1, 2)
print(f'the surface area is {surf}')
print(f'the volume is {vol}')

the surface area is 12.566370614359172
the volume is 6.283185307179586

Python is not typed, therefore the input variables could be any quantity. If the input variables
implement the operations that are executed in the function body (such as multiplication and expo-
nentation), the function will also produce a useful output. For example, we could use numpy-arrays
as inputs (much more about numpy later):

[24]: # this doesn't work since the input doesn't support
the arithmetic operations carried out in 'cylinder'
result = cylinder('radius', 'height')

TypeError Traceback (most recent call last)
<ipython-input-24-53f5ee921d0a> in <module>

1 # this doesn't work since the input doesn't support
2 # the arithmetic operations carried out in 'cylinder'

----> 3 result = cylinder('radius', 'height')

<ipython-input-21-5bb0b10773d4> in cylinder(radius, height)
5 from math import pi
6

----> 7 surface = 2 * pi * radius * height
8 volume = pi * radius**2 * height

13

9

TypeError: can't multiply sequence by non-int of type 'float'

[25]: import numpy as np

result = cylinder(np.arange(1,6), np.arange(1,6))
print(f'surface: {result[0]}')
print(f' volume: {result[1]}')

surface: [6.28318531 25.13274123 56.54866776 100.53096491 157.07963268]
volume: [3.14159265 25.13274123 84.82300165 201.06192983 392.6990817]

This function call returns a 2-tuple of arrays where each array has five values corresponding to the
five values in the input arrays specifying the radii and heights.

We can also call other user-defined functions within a function:

[26]: def circle(radius):
"""
Computes the circumference and area of a circle
"""
from math import pi

circ = 2 * pi * radius
area = pi * radius**2

return circ, area

def cylinder(radius, height):
"""
Computes the surface and volume of a cylinder
"""
circ, area = circle(radius)

return circ * height, area * height

print(cylinder(1, 2))

(12.566370614359172, 6.283185307179586)

We can also define functions within a function and call them:

[27]: def cylinder(radius, height):
"""
Computes the surface and volume of a cylinder
"""

14

def circle2(radius):
"""
Computes the circumference and area of a circle
"""
from math import pi

circ = 2 * pi * radius
area = pi * radius**2

return circ, area

circ, area = circle2(radius)

return circ * height, area * height

print(cylinder(1, 2))

(12.566370614359172, 6.283185307179586)

The function circle2 is only known locally within the namespace of the function cylinder. It is
unknown outside the function cylinder:

[28]: # 'circle' can be called because it was defined before
in the global name space
print(circle(1.))

'circle2' cannot be called because it was defined only
within 'cylinder'
print(circle2(1.))

(6.283185307179586, 3.141592653589793)

NameError Traceback (most recent call last)
<ipython-input-28-36687c049065> in <module>

5 # 'circle2' cannot be called because it was defined only
6 # within 'cylinder'

----> 7 print(circle2(1.))

NameError: name 'circle2' is not defined

1.5.1 Namespaces: local versus global variables

The variables that are created inside a function are local variables, they only exist temporarily
and are not accessible from outside: they are not part of the global namespace, but only of the
local namespace defined within a function. All local variables are moved to the garbage collector
(i.e. they are deleted in the long run) unless they are returned.

15

[29]: def f(x):
"""
Illustrating local and global variables
"""
local variable that will not be accessible outside
y = x**2

local variable that will be accessible outside since it is returned
z = y + 1

show object's identity to check if indeed the local variable and
the one generated by calling the function point to the same memory
note that 'id(x)' returns the (unique) identity of python object 'x'
print('identity of local variable "z" : {}'.format(id(z)))

return z

x = 10
a = f(x)
print('identity of global variable "a": {}'.format(id(a)))
print('Is a variable named "y" part of the global namespace? - {}'.format(

'y' in globals()))
print('Is a variable named "a" part of the global namespace? - {}'.format(

'a' in globals()))

identity of local variable "z" : 93873154654080
identity of global variable "a": 93873154654080
Is a variable named "y" part of the global namespace? - False
Is a variable named "a" part of the global namespace? - True

Since the identity of the objects to which the local variable z and the global variable a refer is
identical, they address the same memory. All variables that are part of the global namespace can
be listed by calling the built-in function

globals()

It is also possible to define global variables with the Python keyword global, but since the use of
global variables is not recommended, we won’t discuss global variables any further.

1.6 Algorithms and control structures
An algorithm is an ordered sequence of precisely defined instructions that performs some task in
a finite amount of time. Ordered means that the instructions can be numbered, but an algorithm
must have the ability to alter the order of its instructions using a control structure. There are three
categories of algorithmic operations:

1. Sequential operations: Instructions executed in order.

2. Conditional operations: Control structures that first ask a question to be answered with
a true/false answer and then select the next instruction based on the answer.

16

3. Iterative operations (loops): Control structures that repeat the execution of a block of
instructions.

1.6.1 Control structures: the if, elif and else keywords

The if statement’s basic form is

if condition:
do something
pass

Every if statement terminates with a colon and must be followed by a block of commands that is
indented to the right and will be executed, if the condition is met. A condition is a boolean-valued
expression such as i < 10.

[30]: a = 10
if a < 20:

print(f'value of "a" inside if block: {a}')
a = 20

print(f'value of "a" outside if block: {a}')

value of "a" inside if block: 10
value of "a" outside if block: 20

The basic structure for the use of the if-else statement is

if condition:
do something
pass

else:
do something else
pass

The general form of the if statement is

if condition1:
statement1
pass

elif condition2:
statement2
pass

else:
statement3
pass

The else and elif keywords may be omitted if not required. However, if both are used, the else
statement must come after the elif statement to take care of all conditions that are not met.

Example:

[31]: def f(value):
if value == 0:

17

print('value is 0')
elif value == 1:

print('value is 1')
elif value == -1:

print('value is -1')
else:

print('value is neither -1, 0, 1')

f(0)
f(1)
f(-1)
f(100)

value is 0
value is 1
value is -1
value is neither -1, 0, 1

[32]: # nested conditions
a = 10
if a < 11:

if a > 9:
print(a)

else:
print(a**2)

10

1.7 Loops
1.7.1 The for loop

A simple example of a for loop is

for k in range(0, 11, 2):
for loop block
pass

The loop variable k is initially assigned the value 0, each successive pass through the loop increments
k by 2 until the value 10 is reached. The program then continues to execute any statements following
the end statement.

[33]: for k in range(0, 11, 2):
print(k, end=' ')

0 2 4 6 8 10

The for loop can loop over any iterable quantity such as a list or a tuple. For example:

18

[34]: # create a list
a = ['x', 'y', 0, 10]

loop over list and print elements
for elem in a:

print(elem, end=' ')

x y 0 10

A convenient built-in command is

enumerate

which returns an iterator that yields 2-tuples where the first element of the tuple is the list index
and the second element is the list element:

[35]: for i, elem in enumerate(a):
print(f'The {i+1}-th element of list "a" is {elem} (but the index is {i})')

The 1-th element of list "a" is x (but the index is 0)
The 2-th element of list "a" is y (but the index is 1)
The 3-th element of list "a" is 0 (but the index is 2)
The 4-th element of list "a" is 10 (but the index is 3)

Another useful python command is

zip

It allows you to zip up multiple lists in a zipper-like fashion:

[36]: # create three lists to be zipped
a = ['x', 'y', 0, 10]
b = [-1, -10, None, 'q']
c = ['a', 'b', 'c']

for t in zip(a, b, c):
print(t)

('x', -1, 'a')
('y', -10, 'b')
(0, None, 'c')

Note that the shortest list defines the number of tuples that are yielded by zip. In the above
example, since list c has only three elements (whereas lists a, b have four), the iterator created by
the zip command yields also only three 3-tuples.

1.7.2 The while loop

The while loop is used when the looping process terminates because a specified condition is satisfied,
and thus the number of passes is not known in advance. A simple example of a while loop is

19

while condition:
while code block
pass

For the correct execution of a while loop the following two conditions must be satisfied:

• The loop variable must have a value before the while statement is executed
• The loop variable must be changed somehow by the statements

Here is a simple example of a while loop:

[37]: x = 5
while x < 25:

print(x, end=' ')
x = 2*x - 1

5 9 17

The Python keyword break allows you to break out of a while loop.

[38]: # without the break statement this loop would run
forever
x = 5
while True:

print(x, end=' ')
x = 2*x - 1
if x > 12:

break

5 9

A little quiz: Before executing the code try to guess what will be printed to standard output:

[39]: a, b = 1, 1

while a < 100:
print(a, end=' ')
a, b = b, a+b

1 1 2 3 5 8 13 21 34 55 89

1.8 General structure of a Python script
The general structure of a Python program or script is as follows:

"""
Documentation briefly explaining the script's functionality
"""
load modules that are needed by the script
import something

User-defined functions

20

def my_function1():
pass

Test code or main code
if __name__ == '__main__':

Put some code running the above function(s) here
For example
my_function1()

By using the condition

if __name__ == '__main__':

you can at the same time

1. test your code while developing it,
2. use the functions that you defined yourself in some other code without executing the test

code.

A simple example is the following script circle.py

[40]: """
This module defines a constant 'twopi' and computes the circumference
of a circle
"""
import math

define 2*pi
twopi = 2 * math.pi

def circumference(radius):
"""
Computes the circumference of a circle with the given radius
"""
return twopi * radius

if __name__ == '__main__':
some test code
print(circumference(1.))

6.283185307179586

You could save this piece of code in a py-file called, e.g., circle.py and use it in some other other
“client” code:

import my own module (without executing the test code)
import circle
l = circle.circumference(2.)
print(circle.twopi)

21

1.9 Strings
1.9.1 String methods

[41]: s = 'Image Processing I'
print(s)
print(s.split())
print(s.lower())
print(s.replace(' ', '+'))
print(s.count('s'))
print(s.index('g'))

Image Processing I
['Image', 'Processing', 'I']
image processing i
Image+Processing+I
2
3

1.9.2 Creating strings with format strings

[42]: s = '{0:d}'
print(s.format(12))
s = '{0:08b}'
print(s.format(45))

12
00101101

22

	Image processing I - Programming I
	Outline
	Built-in data types
	Scalar data types
	Compound data types
	Useful Built-In Functions

	Basic operations
	Arithmetic operations
	Comparison Operations
	Logical operations
	Identity and Membership Operators
	Bitwise operations

	Lists, tuples, sets
	Indexing and slicing
	Mutable versus immutable containers

	User-defined functions
	Namespaces: local versus global variables

	Algorithms and control structures
	Control structures: the if, elif and else keywords

	Loops
	The for loop
	The while loop

	General structure of a Python script
	Strings
	String methods
	Creating strings with format strings

