In this project dendritic mechanisms of synaptic plasticity will be analyzed. In layer 5 neurons of mouse visual cortex, strong afferent synaptic stimulation elicits an dendritic action potential. This dendritic action potential is accompanied by a local intracellular calcium concentration increase (see figure). A single dendritic action potential is able to induce a long lasting depression of synaptic transmission strength (LTD).
Figure: Displayed in pseudo-colors is the resting image of a pyramidal neuron in layer 5 of mouse visual cortex. The cell was filled with a calcium-sensitive dye via a patch-pipette. The inset shows a part of the dendritic tree after strong synaptic stimulation. The red colors represent a local increase in intracellular calcium concentration caused by a dendritic action potential. The lower panel shows the impact of a dendritic action potential on the synaptic transmission strength. A single dendritic action potential induces a long lasting depression on the synaptic transmission strength (LTD). (Figure modified from Holthoff et al., 2004)
References:
- Graf J, Samiree A, Flossmann T, Holthoff K, Kirmse K (2024) Chemogenetic silencing reveals presynaptic Gi/o protein mediated inhibition of synchronized activity in the developing hippocampus in vivo. iScience. DOI: 10.1016/j.isci.2024.110997
- Teichert M, Gull S, Herrmann KH, Gaser C, Reichenbach JR, Urbach A, Frahm C, Holthoff K, Witte OW, Schmidt S (2024) Harnessing early multimodal motor training to drive motor recovery and brain-wide structural reorganization after stroke. bioRxiv doi: https://doi.org/10.1101/2024.07.03.601837
- Prüss H, Kirmse K (2018) Pathogenetic role of autoantibodies against inhibitory synapses. Brain Res 1701:146-152. doi: 10.1016/j.brainres.2018.09.009.
- Haselmann H, Mannara F, Werner C, Planaguma J, Miguez-Cabalo F, Schmidl L, Grünewald B, Petit-Pedrol M, Kirmse K, Classen J, Demir F, Klöcker N, Soto D, Doose S, Dalmau J, Hallermann S and Geis C (2018) Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganisation and memory dysfunction. Neuron DOI: 10.1016/j.neuron.2018.07.048.
- Lukas M, Holthoff K, Egger V (2018) Long-Term Plasticity at the Mitral and Tufted Cell to Granule Cell Synapse of the Olfactory Bulb Investigated with a Custom Multielectrode in Acute Brain Slice Preparation. Methods Mol Biol 1820:157-167. doi: 10.1007/978-1-4939-8609-5_13.
- Popovic M, Vogt K, Holthoff K, Konnerth A, Salzberg BM, Grinvald A, Antic SD, Canepari M, Zecevic D (2015) Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines. Adv Exp Med Biol 859:57-101. doi: 10.1007/978-3-319-17641-3_3
- Holthoff K, Kovalchuk Y, Konnerth A (2006) Dendritic spikes and activity-induced synaptic plasticity, Cell Tissue Res 326: 369-77.
- Holthoff K, Kovalchuk Y, Yuste R, Konnerth A (2004) Single-shock LTD by local dendritic spikes, J Physiol 560: 27-36.
- Holthoff K (2004) Dendritic spikes and synaptic plasticity, Curr Neurovasc Res 1 (4): 269-281.
- Holthoff K, Tsay D (2002) Calcium dynamics in spines: Link to synaptic plasticity, Exp Physiol 87.6, 725-731.
- Goldberg J, Holthoff K, Yuste R (2002) A Problem with Hebb and local spikes. Trends Neurosci 25: 433-435.
- Holthoff K, Tsay D, Yuste R (2002) Calcium dynamics in spines depend on their dendritic location. Neuron, 33:425-437.
- Yuste R, Majewska A, Holthoff K (2000) From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 3(7): 653-659.